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We examine the prospects for finding "best possible" or "ideal" computing 
machines for various learning tasks. For this purpose, several precise senses 
of "ideal machine" are considered within the context of formal learning 
theory. Generally negative results are provided concerning the existence of 
ideal learning-machines in the senses considered. 

S E C T I O N  1: I N T R O D U C T I O N  

Mach ines  tha t  learn  have bo th  t echno log ica l  and  scient i f ic  in teres t .  On  the 
one  hand ,  they  ho ld  the  p r o m i s e  o f  uncover ing  useful  regular i t ies  tha t  
wou ld  o therwise  be missed.  O n  the o the r  h a n d ,  they  serve as po t en t i a l  
mode l s  o f  h u m a n  learn ing ,  inc luding  l anguage  acqu i s i t i on . '  Both  endeavo r s  
have met  with such ini t ia l  success tha t  it  is na tu r a l  to  inqu i re  a b o u t  idea l  or  
" b e s t  p o s s i b l e "  l ea rn ing -mach ines  for  a given p r o b l e m  d o m a i n .  2 Such  an  
inqu i ry  requires  c la r i f i ca t ion  o f  the  sense in which  a ma c h ine  might  be ideal ;  

*The second author was partially supported by NSF Grant MCS 80-02937. 
'For a general approach to machine learning within the Artificial Intelligence tradition, 

see Winston (1978). Wexler and Culicover (1980, Chs. 1, 2) provide a valuable introduction to 
the empirical issues confronting the application of formal learning theory to human language 
acquisition. 

~All the learning-machines to be considered in this paper will be "idealizations" of 
physically real learners, in that factors like longevity will be left out of account. At issue are 
ideal versions of such idealized learners, that is, formal devices with superior inductive powers 
in one or another sense. In what follows, we use the term "ideal" exclusively with the latter 
meaning. 
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more than one clarification suggests itself. Thus, a machine might be con- 
sidered ideal with respect to how much it can learn; for example, a machine 
that could learn every possible language presented to it would be ideal in a 
strong sense. Alternatively, it might be the manner in which a machine 
learns that is ideal; for example, an ideal machine for a given class of  lan- 
guages might learn those languages at least as fast as any other machine. 

Ideal learning-machines, in one or another sense, have evident tech- 
nological importance. They are of  interest as well to those who wonder 
whether the human infant is an ideal learner of  natural language, or a close 
approximation thereto; such an evolutionary development might have im- 
posed strong constraints on the class of  possible human grammars. 

The purpose of  the present paper is to evaluate in general terms the 
prospects for finding ideal learning-machines of  various sorts. For this pur- 
pose it will be necessary to precisely render learning and related notions. 
From among the several options available, we rely on two definitions due to 
Gold (1967); these characterizations figure prominently in contemporary 
work in formal learning theory. In the context of  Gold 's  definitions it is 
possible to distinguish four precise senses of  "ideal learning-machine." For 
each sense we ask whether such learning-machines exist. 

In more detail, we proceed as follows. Section 2 presents the formal 
paradigm of  learning that is most relevant to current theories of  language 
acquisition; this paradigm is called "text-identification." Section 3 considers 
four construals of  ideal text-identification, and provides mainly negative 
results about the existence of  machines with such ideal capacities. Section 4 
introduces a different learning paradigm, called "informant-identification." 
The subsequent section studies four construals of  ideal informant-identifi- 
cation parallel to those given in Section 3; different, but still mainly nega- 
tive results are provided. Section 6 includes a brief summary. 

To conform to standard usage, learning machines will be said to re- 
spond to " languages ."  Languages are construed extensionally, i.e., as sets 
of  sentences, but they can also be understood more generally, as sets of  data 
of  any nature (so long as each datum is a finite object). In fact, it is suffi- 
cient for present purposes to restrict attention to numerical languages, i.e., 
to subsets of  the set, N, of  natural numbers. Nonnumerical data can be 
assimilated to the present discussion by means of  coding techniques. 3 Like- 
wise, "g rammars"  for languages will be construed broadly, as certain kinds 
of  tests for membership in subsets of  N. 

SECTION 2: TEXT-IDENTIFICATION 

In this section we present Gold's (1967) definition of  "identification in the 
limit by arbitrary text ,"  to be abbreviated to " text- ident if icat ion."  

3For a discussion o f  coding, see Boolos  and Jeffrey (1980). The latter serves, as well, as an 
introduction to Turing Machines, Church's Thesis, and related matters mentioned below. 
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2.1 Languages  and Posit ive Tests 

We identify learning-machines with ordinary Turing Machines, relying on 
Church 's  Thesis to insure that every intuitively mechanical process is ade- 
quately represented thereby. Each Turing Machine is conceived as examining 
input languages (i.e., sets o f  numbers) and announcing output  grammars .  

Grammars  are identified with positive tests. A positive test is a pro- 
cedure, P, such that for some language, L, P behaves as follows for all x¢N: 
given x as input, P eventually halts with output  1 if and only if x~L.'  In this 
case, P is said to be for  L. It is an elementary result o f  au tomata  theory that  
if there is one positive test (i.e., Turing Machine) for a given language, then 
there are an infinity of  distinct positive tests for that language. Such Turing 
Machines provide a convenient normal  form for positive tests, learning- 
machines can be conceived as announcing the programs of  other Turing 
Machines; but we shall continue to refer to the latter as positive tests. 

Hencefor th  we restrict attention to languages for which there are posi- 
tive tests. Such languages are called recursively enumerable. There are recur- 
sively enumerable languages without recursively enumerable complements;  
one such language (to play a role in our discussion) is standardly denoted: K. 

2.2 Texts 

Languages are presented in piecemeal fashion to learning-machines; such 
presentations are called texts. More precisely, let L be a language. A text for  
L is any infinite sequence of  members  of  L, repetitions allowed, such that  
every member  of  L occurs at least once in the sequence. 

A finite sequence that constitutes an initial segment o f  a text, t, is said 
to be in t. If  s is a finite sequence, Rng(s) denotes the (finite) set of  elements 
occurring in s. We let SEQ stand for the set o f  all finite sequences. 

To illustrate, let L = {sl,  s2, s3 . . . .  } be a language. A sample text, t, 
for L begins as follows: s3, s2, s2, s3, s l ,  s2 . . . . .  The first five finite se- 
quences in t are: 

s3 
s3, s2 

(*) s3, s2, s2 
s3, s2, s2, s3 
s3, s2, s2, s3, sl 

These finite sequences are said to have lengths one through five, respectively. 
In contrast,  s2, s2, s3 is not a finite sequence in t since it is not initial in t. 
The text t is not a sequence in itself, since t is not finite. 

"If x~L, P may halt with some output other than 1, or P may never halt at all; the def'mi- 
tion of positive test is not specific in this regard. P is a "positive" test for L in the sense that it is 
guaranteed to react to membership in L (positive tests are not guaranteed to react to nonmem- 
bership). 
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2.3 Convergence and Text-Identification 

Each learning-machine, M, constitutes a possibly partial function from 
SEQ into the set of  all positive tests (i.e., into the set of  Turing Machines). 
The function defined by a given machine, M, may be partial because M may 
yield no output  in response to some members  of  SEQ. 

Given a text, t, we may conceive of  M as examining ever longer finite 
sequences in t, as t is fed one element at a time into M. For some or all of  
these finite sequences, M announces positive tests. Each time M announces 
a positive test, the next element of  t (and hence the next finite sequence in t) 
is fled into M; if M is undefined on a certain finite sequence, s, in t, and thus 
never announces a positive test in response to s, no more of t is fed into M. 
Given s~SEQ, M(s) denotes the positive test, if any, produced by M after it 
has read all of  s (if M is defined on each sequence in s). 

Given a learning-machine, M, a text, t, and a positive test, p, we say 
that M converges to p on t just in case (a) M yields a positive test on every 
finite sequence in t, and (b) there is an n such that for all finite sequences, s, 
in t such that the length of  s exceeds n, M applied to s yields p. Intuitively, 
M converges to p on t in case M is defined on all initial segments of  t, and 
M's  output  eventually stabilizes to p. If  M fails to converge to any positive 
test on a given text, t, then M is said to diverge on t. M is said to text-identify 
a language, L, just in case for every text, t, for L there is a positive test, p, 
for L such that M converges to p on t. 5 

Let L be a class of  languages. M is said to text-identify L just in case 
M text-identifies every language in L. A class of  languages that some learn- 
ing-machine text-identifies is called text-identifiable. Notice that if M text- 
identifies a collection, L, o f  languages,, then M text-identifies every subset 
of  L as well (hence, every subset of  a text identifiable class of  languages is 
also text-identifiable). Finally, note that every (recursively enumerable) lan- 
guage, L, taken by itself, is text-identifiable; for example,  a machine that  
always conjectures the same positive test for L, regardless o f  input, text- 
identifies L. In contrast,  questions about  the text-identifiability o f  collec- 
tions of  languages are often nontrivial, since many  such questions receive 
negative answers (as will be seen directly). Such is the consequence of  re- 
quiring the same learning machine to respond correctly to texts for different 
languages. 

The set of  machines that text-identifies a given class, L, o f  languages 
is denoted: ML 

'There  are thus three ways that M can fail to text-identify a language,  L: for some text, 
t, for L (a) M might converge to a positive test that is not  for L, (b) M might be undefined on 
some finite sequence in t (and thus diverge on t), or (c) M might  forever offer distinct positive 
tests in response to finite sequences in t (and thus likewise diverge, whether or not  some or all 
of  those positive tests are for L). 
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SECTION 3: I D E A L  T E X T - I D E N T I F I C A T I O N  
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In this section we specify four senses of  "ideal  learning-machine for text- 
identif ication." Relevant existence or nonexistence theorems are provided. 
All definitions are relative to text-identification. 

3.1 Complete Text-Identification 

A learning-machine, M, that can text-identify every (r.e.) language would 
be ideal in an obvious sense. Such machines are called complete. 6 The fol- 
lowing proposit ion shows that there are no complete learning-machines. 

Proposition 1. Let F* be any collection of  languages consisting of all 
finite subsets of  N, plus any infinite subset o f  N. Then F* is not text-identi- 
fiable by any learning-machine. 

Proof. The proof  of  the proposit ion may be found in Gold (1967). [] 

Proposit ion 1 shows that our conception of "ideal  learning-machine" 
must be weakened if it is to be nonvacuous.  One 's  initial impulse is to re- 
strict attention to text-identifiable collections of  languages, and to define a 
machine, M, to be ideal just in case it text-identifies any such class. How- 
ever, it is easy to see that no ideal machine of this kind exists. For, every 
singleton collection of  languages, {L}, is text-identifiable, and Proposit ion 
1 is enough to show that no machine can text-identify every such collection. 
To frame a nonvacuous definition of  ideal learning machine it is necessary 
to impose additional limitations. The next subsection presents a plausible 
way of  doing this. We shall see that despite our maneuvers the resulting 
definition does not escape triviality. 

3.2 Maximal Text-Identification 

Since the proof  of  Proposit ion 1 turns on a collection of  languages that is 
not text-identifiable, we are led to the following definition. A learning- 
machine, M, is said to be maximal just in case M text-identifies a collection, 
L, of  languages such that no proper superset of  L is text-identifiable; in this 
case, M is said to be maximal fo r  L. The learning ability of  a maximal learn- 
ing-machine is therefore unsurpassed by any other learning machine. Such 
machines are " idea l "  for L in a strong sense. 

6Or rather: complete (for text-identification). We suppress the parenthetical qualifica- 
tion henceforth in this section. 
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There are maximal machines for the collection of  all finite languages. 
To see this, consider a machine, M, that behaves as follows: Given any finite 
sequence, s, M produces a positive test for exactly Rng(s); such a positive 
test can be uniformly and mechanically constructed from a given finite set. 
It is clear that if M is supplied with a text for a finite language, it will con- 
verge to a positive test for that language; and if M is supplied with a text for 
an infinite language, M will never converge on that text. Hence, M text- 
identifies the collection, F, of  all finite languages and nothing else. By Prop- 
osition 1, no proper superset of F is text-identifiable; hence, M is maximal 
for the set of  all finite languages. 

Are there maximal machines for collections other than the collection 
of  all finite languages? The next Proposition shows that this is not the case. 

Proposition 2. Let L be a collection of  languages such that L is text- 
identifiable, and no proper superset of  L is text-identifiable. Then L is the 
class, F, of  all finite languages. 

Proof. On the one hand, suppose that L includes no infinite language. 
Then, if L is a proper subset of  F, there is a proper superset of  L (namely, b-) 
that is text-identifiable; and if L is exactly F, then Proposition 1 shows that 
no proper superset of  L is text-identifiable. 

On the other hand, suppose that L includes an infinite language, L. 
We show that there is another infinite language, L',  such that L 1.3 {L'} is 
text-identifiable (and hence L is not maximal). For this purpose, a lemma is 
useful. 

Lemma.  Let M be a learning-machine, and let L be a collection of  
languages that M text-identifies. For every LeL there is a finite sequence, s, 
such that Rng(s) C_ L, M(s) is a positive test for L, and for every finite exten- 
sion, s', o f  s, such that Rng(s') C_ L, M(s) = M(s'). 

The lemma is proved in Blum and Blum (1975). 
Now let M text-identify L. Let s be the finite sequence for L and M 

specified by the lemma. Let pCL-rng(s) .  Let L ' = L - { p } .  L'¢L since M 
must give a positive test for L when given a text which begins with s and 
ends with the rest of  L -  {p}. But L U {L'} is identifiable by a learning- 
machine, M', defined as follows. Given any positive test, k, we let W~ be the 
language for which k is a positive test. Then, for all teSEQ: 

a positive test for WM,~ -- {p} if pCrng(t) 
M'(t) 

M(t), otherwise. 

It is clear that we can mechanically test which case we are in, and mechani- 
cally produce a positive test of  the sort desired in the first case. 7 [] 
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Proposit ion 2 shows that with the trivial exception of  machines that 
are restricted to learning finite languages, for any learning machine, M, 
there is another  learning machine, M' ,  such that M'  text-identifies every- 
thing that M text-identifies, plus more.  Consequently, if  a machine is con- 
sidered to be ideal only if no other machine text-identifies more than it does, 
then there are no ideal learning machines that text-identify an infinite lan- 
guage. 

3.3 Efficient Text-Identification 

The conceptions of  "ideal  machine"  considered so far have concerned what 
a machine can learn. In this subsection and the next we consider instead 
how the learning proceeds. As before, it will be necessary to relativize our 
conception of  ideal to particular classes of  languages. 

If  a learning-machine, M, text-identifies a language, L, then for any 
text, t, for L there is some finite sequence, s, in t such that M begins to con- 
verge on t upon examining s. The length of  s is called the convergence length 
for M on t. In general, different texts for L will be associated with different 
convergence lengths for M. 

A learning-machine, M, is "ef f ic ien t"  with respect to the languages it 
text-identifies to the extent that M's  convergence lengths are small . '  This 
suggests another  sense of  "ideal  learning-machine for a given class of  lan- 
guages ."  Let L be a class of  languages, and let M, M'eML.  We say that M is 
at least as efficient as M' for  L just in case for all LeL, and for all texts, t, 
and L, the convergence length for M on t is at least as small as the con- 
vergence length for M'  on t. I f  for all M'e MZ, M is at least as efficient as M '  
for L, then M is said to be most efficient for L. 

A weaker notion of  ideal efficiency may also be defined. Let L be a 
class of  languages, and let Me ML. M is said to be maximally efficient for L 
just in case for all M'e M ; ,  if M'  is at least as efficient as M for L, then M is 
at least as efficient as M'  for L. 9 

Obviously, most efficiency implies maximal efficiency; the converse 
implication is false.'° Furthermore,  there are text-identifiable classes of  lan- 

'An  easy adaptation of  this proof  shows that every text-identifiable class of  languages 
that includes an infinite language can he extended to a text-identifiable collection that includes 
an infinity of  new languages. Similar remarks apply to Proposition 8. 

'Note  that efficient machines need not be " f a s t "  since they may consume considerable 
time on each input. 

'Thus,  M is maximally efficient for L just in case no machine is both (i) at least as effi- 
cient as M for L, and (ii) more efficient than M on some text for a language in L. 

'°For a counterexample, let L = { {2, 3 }, {2, 4 } }, and let M~ ML conjecture {2, 3 } when 
it encounters a 3 (and thereafter), or an initial string of  2's, and let M conjecture {2, 4} other- 
wise. M is maximally efficient for L, but not most efficient; for, M is not at least as efficient as 
M'¢ M; which conjectures {2, 4} when it encounters a 4 (and thereafter), or an initial string of  
2's, and which conjectures {2, 3} otherwise. 
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guages for which most efficient learning-machines exist; classes containing 
just one language provide trivial examples, but infinitary cases can also be 
devised. Can most efficient or maximally efficient machines always be 
found for text-identifiable classes of  languages? The next proposit ion 
answers this question negatively. 

Proposition 3. There are text-identifiable collections of  languages for 
which there are no maximally efficient learning machines. 

Proof. One such collection, L, consists o f  languages of  form 

L°=  {2', 3°: ieN if aeK, and i e N -  {a} if aeK} 

' for all aeN. 

Lemma. For no learning-machine, Me M~, does M produce,  for all 
aeN, a positive test for Lo in response to a finite sequence of  length 1 con- 
sisting of  the number  3 ° . 

Proof o f  the Lemma. Otherwise, the following procedure would ex- 
hibit a positive test for K: to positively test aeK, present 3 ° to M and put 2 ° 
into the resulting positive test, p; by definition of  L, p with input 2 ° will 
eventually halt with output l if and only if aeK. 

In view of  the lemma, given any Me MZ, there is a beN such that for 
all texts, t, for Lb that begin with 3 ~ the convergence length for M on t ex- 
ceeds I. Thus, given any Me M; we may construct an M'e MZ such that M'  is 
at least as efficient as M but not the converse: M'  simulates the behavior of  
M except for the input 3 b to which M'  reacts immediately and correctly. 
Thus M is not maximally efficient. []  

As a corollary to Proposit ion 3, there exist text-identifiable classes of  
languages for which no most efficient learning-machine exists. 

Consideration of  efficiency suggests other indices of  the computa-  
tional feasibility of  text-identification. Natural  measures include (a) the total 
number  of  computat ional  steps prior to convergence, and (b) the maximum 
amount  of  internal memory-space filled at any time prior to convergence. 
For both of  these performance measures results parallel to Proposit ion 3 are 
available. 

3.4 Reliable Text-Identification 

For a machine, M, to text-identify a class, L, of  languages, it is sufficient 
that, for all LeL, M converge to a positive test for L whenever a text for L is 
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presented; M's behavior on texts for languages outside of  L is not prescribed. 
In particular, for L~L, M may well converge to a positive test for L ' ~ L ;  
that is, M may converge to an incorrect conjecture. 

A learning machine, M, is called reliable just in case for every text, t, 
and for any language, L, either M converges on t to a positive test for L, or 
else M diverges on t . "  Such discriminating behavior is " idea l"  from the 
point of  view of  the information conveyed by a learning-machine. Reliable 
machines do not, misleadingly, continue to put out the same, incorrect 
hypothesis. 

A machine, M, that responds to any finite sequence, s, by putting out 
a positive test for Rng(s) is an example of  a reliable learning-machine: M 
text-identifies every finite language, and any text for an infinite language 
will cause M to change its conjectures indefinitely, hence, to diverge. Un- 
fortunately, the only reliable machines are those that are restricted to text- 
identifying finite languages. 

Proposition 4. If a machine, M, text-identifies any infinite language, 
then M is not reliable. 

Proof. The result follows immediately from the lemma of  Proposi- 
tion 2. [] 

SECTION 4: INFORMANT-IDENTIFICATION 

In this section we present a second paradigm of  learning, to be called "in-  
formant-identif ication;" its definition is based on Gold (1967). 

4.1 Languages and Tests 

Learning machines are identified, as before, with ordinary Turing 
Machines; these machines examine languages and conjecture grammars. 
However, the languages and grammars are conceived more narrowly than 
before, and the means of  presenting languages to learning machines assumes 
a different character. 

Grammars are identified with (positive and negative) tests. A test is a 
procedure, P, such that for some language, L, P behaves as follows for all 
xeN: given x as input, P eventually halts with output  1 if and only if x~L, 
and P eventually halts with output 0 if and only ifx~L. In this case, P is said 
to be for L. Notice that an arbitrary Turing Machine may fail to implement 
a test since it may, on certain inputs, halt with an output different from 0 to 

' 'The notion of reliability was first studied by Minicozzi (see Blum & Blum, 1975). 
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1, or never halt at all.'2 Since Turing Machines provide a convenient normal  
form for both tests and positive tests, learning-machines may be conceived 
as announcing the programs of  other machines; but we shall continue to 
refer to the latter as tests or positive tests. 

Since the present learning paradigm concerns the identification of  lan- 
guages for which tests exist, we restrict attention (until Section 6) to such 
languages. Languages for which there are tests are called recursive. 

4.2 Informants 

In the new paradigm, the piecemeal presentation of  a language to a learn- 
ing-machine is called an informant; informants  provide more information 
about a language than do texts. Let L be a language. An informant for L is 
any infinite sequence of  ordered pairs of  form < x, 0 > and < x, 1 > (repeti- 
tions allowed) such that for all xeN, < x, 1 > appears in the sequence if and 
only if x~L, and <x ,  0 >  appears in the sequence if and only if x~L. An in- 
formant  for a language, L, thus provides complete information about  both 
membership and nonmembership  in L (texts provide direct informat ion 
about  membership only). 

A finite sequence that constitutes an initial segment of  an informant ,  
i, is said to be in i. We let SEQ* stand for the set of  all possible initial seg- 
ments of  informants.  

4.3 Convergence and Informant-Identification 

Each learning-machine, M, constitutes a possibly partial function f rom 
SEQ* into the set of  positive tests. The behavior of  a learning-machine in 
response to an informant  may be conceived similarly to its behavior in 
response to a text. As before, if M fails to halt on a certain finite sequence, 
s, in a given informant ,  i (i.e., M puts out neither test nor positive test in 
response to s), then no more of  i is put into M. 

Given a learning-machine, M, an informant ,  i, and a test, t, we say 
that M converges to t on i just in case (a) M yields a test on every finite se- 
quence in i, and (b) there is an n such that for all finite sequences, s, in i such 
that the length of  s exceeds n, M applied to s yields t.'3 I f  M fails to converge 
to any test on a given informant ,  i, then M is said to diverge on i. M is said 
to informant-identify a language, L, just in case for every informant ,  i, for 
L there is a test, t, for L such that M converges to t on i. 

'~In contrast ,  every Turing Machine represents a positive test for some language (pos- 
sibly the empty language). It is also worth noting that ,  as before, if there is one test for a given 
language, then there are an infinity of  distinct tests for that language. 

"Notice that according to our definition, a machine diverges on any in formant  that 
causes it to produce a (mere) positive test. This convention seems most  analogous to that gov- 
erning text-identification. 
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Let L be a class of languages. M is said to informant-identify L just in 
case M informant-identifies every language in L; in this case, L is called in- 
formant-identifiable. The set of machines that informant-identifies a given 
class, L, of  languages is denoted: M~. 

SECTION 5: IDEAL INFORMANT-IDENTIFICATION 

In this section the four senses of  " idea l"  considered in Section 3 are adapted 
to informant-identification. Theorems parallel to those of  Section 3 are pro- 
vided. All definitions will be relative to informant-identification. 

5.1 Complete Informant-Identification 

A learning-machine, M, that can informant-identify every (recursive) lan- 
guage would be ideal in an obvious sense. Such machines are called com- 
plete (for informant-identification). The following proposition shows that 
there are no ideal learning machines in this sense. Let R be the class of  all 
recursive languages. 

Proposition 5 (Gold, 1967). R is not informant-identifiable. 

Proof. Let a learning-machine, M, be given. Define: 

W =  {p : (~IseSEQ*) (M(s) = p) } 

Since SEQ* is recursive, W is recursively enumerable. By a simple diagonal 
argument, no set of tests for all the recursive languages can be recursively 
enumerable. Therefore,  if every member of  W is a test, then M does not 
identify every recursive language. So, suppose that for some peW, p is a 
(mere) positive test. Then, for some seSEQ*, M(s) = p. But then Rng(s) is a 
recursive language not informant identified by M since for some finite se- 
quence in some informant for Rng(s), M fails to produce a test. Hence, M 
does not informant-identify R. [] 

Parallel to the case of  text-identification, Proposition 5 shows that 
our conception of  "ideal learning-machine (for informant-identification)" 
must be weakened. The next subsection considers a plausible way of  at- 
tempting this. 

5.2 Maximal Informant-Identification 

A learning-machine, M, is said to be maximal (for inforrmant-identifica- 
tion) just in case there is some class, L, of  languages such that M informant- 
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identifies every superset of  L that is informant-identifiable; in this case, M 
is said to be maximal for L. Thus, a maximal learning-machine informant- 
identifies a collection, L, of  languages such that no proper superset of  L is 
informant-identifiable; the learning ability of  a maximal learning-machine 
is therefore unsurpassed by any other learning-machine. Such a device 
would be "ideal for L "  in a strong sense. 

Unfortunately, in the context of  informant-identification, maximality 
is a vacuous notion. 

Proposition 6. Let M be a learning-machine, and let L be a class of  
languages that M informant-identifies. Then, there is another machine, M', 
that informant-identifies a collection, L' ,  of  languages such that L C_ L',  
and M does not informant-identify L' .  

Proof. Let t be a test for a recursive language not in L (by Proposi- 
tion 5 there must be such a test). On every informant,  i, M' stores input 
pairs in memory, and conjectures t until t becomes inconsistent with an ini- 
tial segment of  i put into M'. In the latter case M' simulates M on i, using 
stored pairs in order to present all of  i to M. [] 

So, there are no maximal learning-machines for informant-identifica- 
tion. 

5.3 Efficient Informant-Identification 

In the context of  informant-identification, the notions of  "convergence 
length," "most  efficiency," and "maximal efficiency" carry over straight- 
forwardly from Section 3.3. And, similarly to before, whereas there are 
most efficient machines for the informant-identification of  certain classes 
of  languages, there are also informant-identifiable classes of  languages for 
which there are not even maximally efficient learning machines. 

Proposition 7. There are informant-identifiable collections of  lan- 
guages that cannot be informant-identified by any maximally efficient learn- 
ing machine. 

Proof. The class, L, in the proof  of Proposition 3 is one such collec- 
tion of  languages. The argument is parallel to that given before. [] 

As a corollary to Proposition 7, there exist informant-identifiable 
classes of  languages for which no most efficient learning-machine exists. 

Results parallel to Proposition 7 obtain for other natural indices o f  
the computational feasibility of  informant-identification. 
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5.4 Reliable Informant-Identif ication 

A learning-machine is called reliable (for informant-identification) just in 
case for every informant ,  t, for any recursive language, L, either M con- 
verges on t to a test for L, or else M diverges on t. Reliable machines are 
available for every informant-identif iable class of  languages. 

Proposition 8. I f  a class, L, of  languages is informant-identifiable,  
then there is a reliable learning-machine that informant-identifies L. 

Proof. Let MEMO. We construct a reliable machine, M 'eM~.  M'  in- 
ternally simulates M on every informant ,  i. On each finite sequence, s, in i, 
M'  puts out the conjecture, c, made by M on s, but only after M'  has 
verified that c is consistent with s. If  M puts out no conjecture on s, or if  c is 
not defined on all the numbers appearing in left-coordinates of  s, then both 
M and M'  diverge on i. If  c is found to be inconsistent with s, then M'  puts 
out a test for {n}, where n is the length of  s. M'  is easily seen to identify L, 
and to be reliable. [] 

SECTION 6: C O N C L U S I O N  

We summarize the preceding discussion in Table 1. Only for reliable infor- 
mant-identification are ideal machines generally available. For the seven 
other senses of  " i dea l "  that we have considered, such learning-machines are 
either not generally available, rarely available, or nonexistent altogether. 
These facts suggest that the search for ideal learning-machines, in any 
natural  sense of  " idea l "  is not a fruitful strategy for Artificial Intelligence 
or Cognitive Science. 

TABLE I 
Summary of Results Concerning Ideal Learning-Machines 

Learning Paradigm 

Sense of ideal Text-identification Informant-identification 

Complete Nonexistent Nonexistent 

Maximal Exist only for collections of Nonexistent 
finite languages 

Efficient Exist for some but not all text- Exist for some but not all infor- 
identifiable collections of mant-identifiable collections of 
languages languages 

Reliable Exist only for collections of Exist for every informant-iden- 
finite languages tillable collection of languages 
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On the other hand, there is a related endeavor of  potential empirical 
interest. Instead of  searching for machines of  unsurpassed learning ability, 
one might instead investigate the limitations inherent in different kinds of  
learning devices. To clarify, let us call any subset o f  Turing Machines a 
(learning) strategy. Some strategies (i.e., subsets o f  machines) have no 
natural characterization, but others correspond to plausible properties of  
the human system for acquiring natural language. For example,  one strat- 
egy includes just those machines that seem unable to " r e m e m b e r "  linguistic 
input presented long ago, and another  strategy includes the machines that 
never abandon a conjecture that is consistent with all the data seen to that 
point. A strategy, S, is called restrictive (for text-identif ication) just in case 
there is a text-identifiable collection, L, o f  languages such that no machine 
in S can text-identify L. Thus, if children can be shown to embody a learn- 
ing procedure that belongs to a restrictive strategy, the class of  natural lan- 
guages would be limited thereby. In this way, investigation of  restrictive 
strategies might facilitate the development of  an explanatory theory of  
natural language. These issues are examined in detail in Osherson, Stob, 
and Weinstein (1981). 

Finally, we note that one kind of  less-than-ideal learning machine 
lowers its standards for accuracy, and is content to approximate  an input 
language. Within this paradigm, identification does not require convergence 
to a g rammar  for precisely the input language; a "near  miss"  suffices. Sev- 
eral formalizations of  approximate  learning are available. Osherson and 
Weinstein (1982) study the effects of  weakening the definition of  identifi- 
ability in these ways. 
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