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This paper reports a psychological study of human categorization that
looked at the procedures used by expert scientists when dealing with puz-
zling items. Five professional botanists were asked to specify a category from
a set of positive and negative instances. The target category in the study was
defined by a feature that was unusual, hence situations of uncertainty and
puzzlement were generated. Subjects were asked to think aloud while solving
the tasks, and their verbal reports were analyzed. A number of problem
solving strategies were identified, and subsequently integrated in a model of
knowledge-guided inductive categorization. Our model proposes that expert
knowledge influences the subjects’ reasoning in more complex ways than
suggested by earlier investigations of scientific reasoning. As in previous
studies, domain knowledge influenced our subjects’ hypothesis generation
and testing; but, additionally, it played a central role when subjects revised
their hypotheses.

I. INTRODUCTION

The motivation of the studies reported in this paper was to explore the role of unexpected
observations in science. How do scientists cope with surprise? How do they revise their
theories to accommodate novel inconsistent data?

Focusing on unexpected observations is often viewed as a powerful heuristic in
scientific reasoning. Exploiting surprising phenomena can promote the design of new
experiments, the generation of new hypotheses, and, occasionally, leads to important
scientific discoveries. Modern theorists of science (e.g., Lakatos, 1976; Popper, 1959)
have forcibly argued that refutation of theories (i.e., the search for disconfirming evidence)
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is an essential component of effective scientific practice. Lakatos, for example, recognized
the value of “heuristic counterexamples,” that he described as counterexamples that “spur
the growth of knowledge” (Lakatos, 1976; p. 86). Similarly, computational approaches to
the philosophy of science (e.g., Darden, 1992; Thagard, 1992) have provided analyses
about the role played by anomalies in theory change. As these analyses show, the
detection (and eventual explanation) of unexpected or contradictory phenomena can force
scientists to revise their theoretical knowledge in different ways: from minor refinements
of auxiliary hypotheses to radical modifications of core theories. Further, as we will show
below (in Section 3), numerous empirical investigations in the psychology of science have
focused on scientists’ responses to contradictory data.

In the current investigation, these issues have been studied in the context of scientific
classification. In particular, the domain chosen for this investigation was plant taxonomy.
More specifically, this paper is concerned with reasoning processes related to the revision
of taxonomies. Classification in general, and taxonomic revision in particular, are crucial
aspects of science. In fact, the creation (and refinement) of taxonomies is basic to many
scientific tasks. Activities such as theory formation, law induction, and experimentation
undoubtedly rely upon a sound classification of elements, for example, physical, chemical,
biological.

Despite the importance of classification in science, the issue has not been addressed by
psychological studies of scientific reasoning. Similarly, although studies of categorization
have dealt with classification tasks that involve expertise, we know of no investigation that
deals with classification by scientists. In this paper we describe a study that investigates
the performance of expert taxonomists as they solve a classification problem related to
their area of expertise.

This study continues Korpi’s (1988) work on inductive categorization. Korpi explored
the influence of puzzling instances and domain knowledge in a categorization task
performed by social sciences students in everyday domains (see Section 4). The current
study extends Korpi’s approach by introducing a scientific domain of classification; expert
botanists were presented with a categorization task that involved actual botanical stimuli
andad hocbotanical categories. The results of the study were integrated in a psycholog-
ical model of inductive categorization that was then implemented in Proto-ReTAX
(Alberdi, 1996), a computational system that reproduced subjects categorization behav-
iors. Some of the mechanisms implemented in Proto-ReTAX were further implemented in
ReTAX, a prototype system for taxonomic revision (Alberdi & Sleeman, 1997).

The rest of this paper is organized as follows: Section 2 presents a brief introduction
to the domain, plant taxonomy; Section 3 reviews previous psychological research related
to the current study; Section 4 describes Korpi’s (1988) investigation of category induc-
tion; Section 5 discusses the methods of data collection and data analysis followed in the
current study; Section 6 presents the most important results of the study; Section 7
proposes a model of knowledge-based inductive categorization and outlines its relation-
ships with Proto-ReTAX and ReTAX; and, finally, Section 8 concludes with a general
discussion of the contributions of this work.
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II. BRIEF INTRODUCTION TO PLANT TAXONOMY

The purpose of biological classification is “to provide an information system, one that
provides comparative information about organisms to biologists and to the general public”
(Abbot, Bisby, & Rogers, 1985; p. 11).

The principal outcome of the taxonomic process is usually the grouping of organisms
in a hierarchical classification. A hierarchy reflects the relationships among different
groups of elements. A group at any level of the hierarchy is known as a taxon (plural:
taxa). The grouping of plants into taxa is based on the similarities and differences
observed among the plants with respect to a series of botanical aspects or features, known
in the taxonomic literature as characters.

A biological hierarchy can comprise a countless number of ranks, starting with the rank
order at the top of a hierarchy, and ending with lower level ranks like subspecies or
section. In general, three of those levels are considered to be the most taxonomically
relevant in a biological hierarchy, namely, family, genus (plural: genera), and species
(plural: species) (Davis & Heywood, 1963).

Taxonomists describe their job as a never-ending task (Abbot et al., 1985; p. 13). In
fact, the history of plant taxonomy can be described as a cumulative process in which new
classification systems supersede earlier ones as new biological information and taxonomic
methods become available. Even now, plant taxonomy is not a finished product, as there
are still many specimens in the world that have not been recognized and classified, and
new biological findings keep shedding new light on different aspects of plants.

III. RELATED WORK

The psychological study described in this paper is directly related to the following
research areas in cognitive science: 1) the psychological investigation of the role of prior
knowledge (in particular, expertise) in human categorization; and 2) psychological studies
that investigate the role of negative evidence in scientific reasoning.

Effect of Knowledge in Concept Learning

In the last decade, various researchers have emphasized the role played by people’s
background knowledge in concept acquisition (e.g., Lakoff, 1987; Murphy & Medin,
1985; Schank, Collins, & Hunter, 1986). Modern analyses of categorization show that, in
many domains, human concepts are interconnected in complex ways, and embedded in
people’s intuitive beliefs and theories of the world (see Murphy & Medin, 1985, for an
in-depth discussion of this issue).

As has been often highlighted, the empirical approach used in traditional studies of
concept induction (e.g., Bruner, Goodnow, & Austin, 1956; Hunt, Marin, & Stone, 1966;
Levine, 1975) is not suitable to assess the influence of prior knowledge (Wisniewski &
Medin, 1994). In standard studies of concept learning, subjects are typically given the task
of identifying a rule (or concept) that defines a set of exemplars as members of a given

55SURPRISE AND EXPERTISE IN TAXONOMY



category and distinguishes them from members of other categories. In these studies, each
exemplar consists of either a verbally described attribute list or a visual stimulus that
contains a small set of unambiguous features. Essentially, in these studies, subjects must
learn what combinations of those features are useful to categorize the exemplars. As
Wisniewski and Medin (1994) have noted, the use of examples composed of unambigu-
ously predefined features is an unrealistic constraint. The use of such exemplars avoids a
crucial aspect of concept learning, namely, the problem of determining the features over
which learning takes place. In real situations, objects can generally be characterized by a
sizeable number of features; but people tend to consider only a subset of those features
when classifying objects. As will be discussed below, people seem to rely on their prior
knowledge to decide the relevant feature set.

Despite the growing interest in the effects of knowledge, much of the recent research
on concept learning has ignored the issue, and has focused on categorization that occurs
in knowledge-poor domains (Wisniewski & Medin, 1994). Nevertheless, various empir-
ical studies have been conducted to directly investigate the influence of prior knowledge
in concept induction. Given the difficulty of tackling knowledge-rich categories, many of
these studies have used highly constrained, artificial domains. In studies that follow this
approach (Nakamura, 1985; Pazzani, 1991; Wattenmaker, Dewey, Murphy, & Medin,
1986), the exemplars (either verbal or visual stimuli) are still characterized by a limited
set of features (generally not more than four or five). Prior knowledge is artificially
manipulated by giving the subjects some theoretical “hint” or a simple ad hoc theory that
is expected to interact with the categorization of the exemplars. Despite its relative
artificiality, this approach has generated interesting empirical results. In general, these
results support a view of concept acquisition in which prior knowledge guides the
selection of the features that people consider in learning. In this view, the role of prior
knowledge is to act as a filter that focuses subjects’ attention on certain characteristics of
the stimuli, hence constraining the feature space that is searched by the subjects. By using
Wisniewski and Medin’s (1994) terminology we will refer to this view as the “knowledge-
as-selection” view.

The “knowledge-as-selection” view has been challenged by recent investigations that
have studied concept learning in more realistic scenarios. In these scenarios, exemplars
consist of complex and ambiguous stimuli that cannot be easily characterized by well-
delimited sets of features. For example, Wisniewski and Medin (1991; 1994) designed a
concept induction task in which exemplars were drawings made by children. Briefly,
Wisniewski and Medin compared the performance of subjects who were given meaning-
fully labeled exemplars (e.g., drawings by “creative children” versus drawings by “non-
creative children”) and subjects who were simply told that the drawings were either
positive or negative instances of a category. Wisniewski and Medin expected that the
meaningful label would activate subjects’ common sense theories about creativity, and
would guide their acquisition of the concepts. A similar approach has been followed by
categorization studies that look at differences between experts and novices. For example,
Chi, Hutchinson, and Robin (1989) compared the performance of “expert” and “novice”
children as they performed categorization tasks with a set of dinosaur drawings. Similarly,
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Ritter (1992) conducted a series of experiments to investigate the influence of expertise in
the classification of art works. The expert subjects in Ritter’s experiments were postgrad-
uate students with a background in history of art, whereas the novices were undergrad-
uates with no college training in art.

The investigations just outlined have shown that, when knowledge (either domain
specific or common sense) was available, subjects tended to produce categorizations that
were qualitatively different from those produced when such knowledge could not be used.
In general, when guided by background knowledge, subjects created categorizations on
the basis of abstract features, that is, features that could not be directly observed on the
stimuli. In contrast, subjects who could not rely on prior knowledge (e.g., the novices),
generated categorizations that were almost exclusively based on surface similarities. Chi
et al. (1989) and Ritter (1992) explained the differences between novices and experts in
terms of the latter’s ability to associate stimuli with domain specific superordinate
categories (i.e., to identify the items as members of such categories). They argued that the
information associated with the superordinate categories allowed subjects to infer novel
features that were not evident on the stimuli. Similarly, Wisniewski and Medin (1994)
found that, when a theory about a concept was available, subjects activated abstract
features (derived from the theory), and searched for evidence in the stimuli that supported
those features. The elicitation of such features provided an explanatory structure that
subjects could use to coordinate and make sense of lower level perceptual information. In
summary, prior knowledge seemed to influence learning in more complex and intricate
ways than implied by the “knowledge-as-selection” view. Further, in the light of their
results, Wisniewski and Medin argued for a model of concept acquisition in which prior
knowledge and empirical evidence are closely interwoven, theory and data influencing
each other.

Reactions to Surprise in Science-Related Tasks

Investigations of the influence of negative evidence in scientific reasoning can be traced
back to Wason’s (1960) studies of confirmation bias in a rule discovery task. Confirmation
bias can be described as people’s tendency to seek evidence that conforms to their
hypotheses and to avoid the collection of potentially falsifying data. This phenomenon has
proved to be a pervasive inference process as it has been reported in numerous studies that
looked at the hypothesis testing preferences of both “laymen” and professional scientists
in a variety of science-related tasks (Evans, 1989). An issue related to confirmation bias
concerns people’s reactions to disconfirming evidence once this has been found. Wason’s
(1960) study showed that subjects’ inference abilities improved after receiving disconfir-
matory feedback from the examiner (i.e., when subjects were told that the hypothesis they
had proposed was incorrect). However, related studies (Mynatt, Doherty, & Tweney,
1978; Tweney, 1989) have suggested that under certain circumstances (especially, in
complex reasoning tasks) subjects often maintain hypotheses that have been disconfirmed
by data. In these such cases, subjects do not only fail to generate falsifying evidence, but
they also disregard such evidence once it appears.
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Most of the studies that investigated confirmation bias and the logic of falsification
typically used highly artificial tasks that overlooked the influence of background knowl-
edge in subjects’ inferences. In contrast, recent investigations have tended to study
scientific discovery in more complex and realistic scenarios and have taken into account
the role of domain knowledge. In this context, Klahr and Dunbar’s (1988) model of
scientific discovery has been particularly influential. Klahr and Dunbar view scientific
discovery as a search in a dual problem space: the hypothesis space and the experiment
space. The model was viewed as an extension of Simon and Lea’s (1974) characterization
of rule induction as search in the hypothesis space and the instance space.1 Klahr and
Dunbar used a simulated context of scientific discovery in which subjects had to determine
the working mechanism of a programmable robot, BigTrak. In Klahr and Dunbar’s study,
subjects (undergraduate students) were asked to formulate hypotheses based on their
background knowledge, to conduct experiments with the robot, and to evaluate the results
of their experiments. Subjects were assumed to have some background knowledge about
programming electronic tools. Depending on what strategies they used, Klahr and Dun-
bar’s subjects were classified either as “Theorists” or “Experimenters.” The “Theorists”
typically searched their memory and formulated hypotheses based on prior knowledge
(i.e., they searched the hypothesis space); the “Experimenters” typically induced their
hypotheses from the results of their experiments, that is, they searched the experiment
space. Further, Klahr and Dunbar detected that when search in the hypothesis space failed,
subjects, in general, switched to search the experiment space.

In an interesting extension to Klahr and Dunbar’s (1988) study, Klahr, Dunbar, and Fay
(1990) focused on the effects of disconfirmatory evidence in the BigTrak discovery
environment. In Klahr et al.’s study, the experimenters suggested to the subjects (again
undergraduate students) a possible hypothesis of how the to-be-discovered command
affected the behavior of BigTrak. The hypothesis was suggested to the subjects before
they actually ran their experiments and formulated their own hypotheses. The hypothesis
indicated by the experimenters was always incorrect; as a consequence, inconsistencies
occurred between the behavior of the robot and subjects’ expectations. Klahr et al.
detected that a powerful heuristic used by some of the successful subjects in the task was
actually to exploit these surprising results. When these subjects noticed a contradiction
between the data and their hypotheses, they set up a new goal: to track down the source
of the unexpected result. This involved a shift of focus that made them execute more
discriminating experiments and generate, in turn, new hypotheses. Subjects who, on the
other hand, simply made minor modifications to the originally induced hypotheses were
not able, in most cases, to find a plausible explanation that accounted for the behavior of
the robot. Analogous results have been found in related studies; for example, Kulkarni and
Simon’s (1988) analysis of the historical records of Hans Krebs’ discovery of the urea
cycle; and Dunbar’s (1993) study of discovery in a simulated molecular genetics envi-
ronment.

In the studies just described, background knowledge is shown to play an important role
in hypothesis generation. But evidence also suggests that domain knowledge can influence
subjects’ hypothesis testing when dealing with inconsistent evidence. For example, Chinn
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and Brewer (1993) conducted an experiment in which they explored the influence of
background knowledge in people’s responses to anomalous data in science-related tasks.
They found that, when subjects’ background knowledge wasnot consistent with anom-
alous evidence (i.e., evidence that contradicted a hypothesis), subjects tended to ignore the
data; thus the hypothesis gained weight. In contrast, when anomalous evidence was
consistent with background knowledge, subjects were more prone to eliminate the
hypothesis and searched for alternative explanations.

Consistent findings were obtained by Dunbar (1995, 1997) in his studies of scientific
reasoning in naturalistic scenarios (i.e., in vivo studies of scientific discovery); Dunbar
studied the scientific activities of researchers working in various major US biology
laboratories. Although Dunbar was mostly concerned with analogical reasoning and social
aspects of discovery, his in vivo studies also provide insights as to how scientists deal with
unexpected evidence. Dunbar (1997) found that on most occasions, far from displaying a
confirmation bias, scientists were likelier to focus their reasoning on unexpected findings
(specially if they were inconsistent with previous hypotheses) than on expected findings.
Furthermore, much of the scientists’ reasoning involved proposing new hypotheses and
experiments to explain the unexpected data rather than attributing the results to some sort
of error. In fact, one of Dunbar’s findings was that more experienced scientists were not
only less prone to confirmation bias but showed what he describes as “falsification bias”.
That is, experts discarded evidence that actually confirmed their hypotheses, but seemed
to actually retain evidence that disconfirmed a current hypothesis (Dunbar, 1995). Dunbar
concludes that domain-specific knowledge is a crucial factor that determines whether
scientists will maintain a hypothesis after encountering inconsistent data.

In summary, studies of scientific discovery suggest that, when faced with falsifying
evidence, people may apply one or more of the following strategies.2

1. Disregardthe negative results and focus on positive data that confirm their theoretical
expectations. As noted, this is a strategy closely related to confirmation bias (Wason,
1960; Mynnat et al., 1978); it has also been encountered in (Dunbar, 1993, 1995).

2. Reinterpretthe conflicting data so that they can be fitted within prior theoretical
expectations (Dunbar, 1993, 1995).

3. Make minor refinementsto a theory (or hypothesis) so that it can account for the new
data. These adaptations generally involve generalizing or specializing the theory
(Dunbar, 1993, 1995; Klahr et al., 1990).

4. Focus on the negative resultsand set the scientist the goal of explaining why the
inconsistency occurred (Dunbar, 1993, 1995; Klahr et al., 1990; Kulkarni & Simon,
1988). This seems to be a particularly efficient strategy that generally leads to a
replacement of the subjects’ original hypothesis with a substantially different expla-
nation of the data (Chinn & Brewer, 1992).

IV. KORPI (1988): THE UNEXPECTED IN A CATEGORY
IDENTIFICATION TASK

Korpi (1988) conducted a psychological study on category induction with the purpose of
detecting the strategies and heuristics used by people when coping with puzzling phe-
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nomena, that is, phenomena that do not fit within their typical way of understanding. That
study has implications both for the study of knowledge-driven categorization, and for the
study of scientific reasoning with unexpected observations. Subjects were faced with a
problem-solving task that was analogous to the situations faced by scientists when they
encounter surprising observations that contradict their theoretical expectations. Korpi used
a variation of the traditional concept attainment task in which subjects are presented with
a series of positive and negative instances of a given category and are then asked to
determine the definition of the category (e.g., Bruner et al., 1956; Levine, 1975; Medin,
Wattenmaker, & Michalski, 1987). The task used by Korpi differed from previous studies
of category induction in several ways, that is, in the type of instances used, the nature of
the categories to be induced, and the type of answers subjects were allowed to give.
Additionally the subjects were asked to talk aloud as they solved the task.

The items used as positive and negative instances of the category consisted of words
that represent commonly-occurring natural concepts (e.g., “cow”). By “natural concepts,”
Korpi meant the type of concepts people use everyday (that are loosely defined, and have
meaning and a network of associations), as opposed to the artificial laboratory concepts
used in traditional studies described earlier (that are defined by a well-delimited set of
features, and that lack meaningful content). In Korpi’s study, the categories that subjects
were asked to identify were “ad hoc” categories, as typified by Barsalou (1983). Ad hoc
categories are categories that are defined for a particular purpose, and consequently are not
well established in people’s memories. In particular, Korpi used categories that were
characterized by unusual or unexpected links, that is, by relationships that people do not
normally associate with the items. Like other meaningful categories, ad hoc categories
have ambiguous boundaries, and some members of a category can be considered “better”
than others. Each subject was given the task of identifying eight categories: “places from
which you can get milk,” “things you can climb,” “parts of a carousel,” “materials from
which to make furniture,” “things with tails,” “things in a circus,” “hot things,” and
“places to carve your initials.”

During the study, all subjects were presented with eight identical items. The positive
instances within each item were ordered randomly, and thepositionsof the negative
instances were selected randomly. Because the positive instances in every item were
linked in an unusual and ad hoc way, the most obvious relationship among the first few
positive instances was not related to the target category. In addition, the initial negative
instances were chosen to share this obvious, but misleading, relationship. Eventually a
positive instance was presented that did not contain this more obvious relationship; hence
the new instance was perceived as a puzzling observation. This is illustrated in Table 1,
which contains one of the sets of examples used by Korpi in her study. In Table 1, the first
three items suggest an obvious relationship: they are all familiar animals. BecauseCOW

and GOAT are both positive instances, the subjects in Korpi’s study tended to base their
categorization on features like the gender or domesticity of the animals. But when the
fourth example,REFRIGERATOR, was presented, categories associated with animals proved
to be inappropriate. As a consequence, subjects were forced to explore new links and
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relationships that would allow them to obtain the right categorization. In this case, the
category they had to identify was “places from which you can get milk.”

As opposed to traditional concept induction tasks in which admissible answers are
predefined by the experimenter and subjects have to choose one and only one answer, in
Korpi’s study, subjects were allowed to generate their own answers. This procedure
allowed subjects to use their natural methods of category induction and provide solutions
that were characteristic of their own thinking, without constraints on the types of answers
they could give.

The study used talk-aloud protocol elicitation and analysis techniques (Ericsson &
Simon, 1984). The task was given to a small number of subjects (five graduate students
of Education) from whom extensive verbal reports were obtained: the subjects were
instructed to report all their thoughts as they solved the categorization task. The resulting
protocols were subsequently coded by Korpi and an independent rater. Table 3, in Section
6, shows a summary of the encoding scheme generated (Korpi’s strategies appear on the
left and in the center of the table).

Korpi compared her results with previous models of concept acquisition; in particular,
Bruner et al.’s (1956), Levine’s (1975), and Medin et al.’s (1987) well-known models.
Many of Korpi’s results were consistent with these models. Like subjects in previous
studies, Korpi’s subjects searched for commonalties among the positive instances and then
tested the resulting hypotheses on the negative instances. The subjects also applied
hypothesis generalization and specialization procedures that are analogous to procedures
encountered in traditional concept learning studies. As noted in Section 3, similar
hypothesis adaptation strategies were found in various investigations of people’s reactions
to contradictory data.

As elements of uncertainty and surprise were important in the task, Korpi detected in
her study several strategies that had not been reported in traditional research of concept
induction. For example, some strategies involve data reinterpretation procedures that
cannot be accounted for in standard models of human categorization. More specifically,
one of the most interesting findings in Korpi’s study refers to the strategies used by the
subjects to shift their focus of attention to alternative explanations. We saw that the search
for alternative explanations was one of the most efficient strategies detected in studies of
people’s responses to anomalies (see Section 3). The strategy that Korpi’s subjects used

TABLE 1
Stimulus Set Used by Korpi (1988)

Items Category

Cow (1) “Places you can get milk from”
Bull (2)
Goat (1)
Refrigerator (1)
Fish (2)
Ham (2)
Grocery store (1)
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most frequently to perform this search was termedFocus Context(see Table 3). In
traditional studies of induction, subjects could obtain the definition of a category by
simply combining a limited set of features that unambiguously characterized the concepts.
But the stimuli in Korpi’s studies were not clearly delimited by a finite set of features;
instead, being natural concepts, they were defined by multiple associations with other
concepts within a general knowledge base. If a subject had to list all the features
associated with, for example, the instanceCOW, the number of associations would be
countless and clearly quite individualistic. Consequently Korpi’s subjects appliedFocus
Context, which involves a focused search in the subjects’ knowledge base for relations that
could explain the data. TheFocus ContextStrategy consists of placing an instance within
a conceptual context, and activating a schema for a concept associated with the instance
within that context. This helps to narrow and guide the search within a broad knowledge
base, focusing the subject’s attention on a particular aspect of the data: the activated
schema, rather than the instances themselves, becomes the context for search. For
example, given the instanceCOW, a subject might associate cows with farms. The subject
would then search his or her knowledge about farms (rather than about cows) to seek a
connection that would linkcow with the other positive instances.

Korpi interpreted these results in the light of a model for concept storage in memory
that took into account spreading activation theories of semantic processing (e.g., Collins
& Loftus, 1975). In Korpi’s model, concepts are represented in a network where they are
interconnected via relations or associations with different degrees of availability to recall:
some associations among the concepts are more obvious then others. Given this model of
concept storage, Korpi postulated a focusing mechanism that explained how subjects
concentrate on the relevant knowledge and ignore superfluous information. Consistent
with Barsalou’s (1983) approach, Korpi’s model proposes that, in people’s memory, each
concept would have associated with it two types of information: some core, context-
independent knowledge that is always directly accessible, and some peripheral, contextual
information that is not normally accessible until some sort of search, or focus of attention
is applied. Contextual pressures would lead the subjects to search in the net of associa-
tions, and concentrate on one type of information or another. In Korpi’s model, a subject
would focus only on one aspect of the concept at a time, paying attention solely to the
information that is relevant to the task at hand.

Korpi’s results and investigative approach represent an interesting contribution to the
study of concept induction. Because she focused on aspects of uncertainty in an incre-
mental learning task, her study deals with problem-solving situations that are relevant to
understanding theory revision. Further, because of her use of natural concepts and
ambiguous categories, her work brings forward a picture of inductive processes that is
more realistic than the ones presented in standard models of human learning. Her model
explains some of the mechanisms that take place in category induction when vast amounts
of knowledge are involved, a situation that is closely related to people’s everyday
categorization. Korpi’s important work was in a general knowledge domain, and laid the
groundwork for further empirical work to determine whether the cognitive mechanisms
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she proposed are applicable to other domains and to different but related tasks, for
example, induction in science.

The psychological study we describe in this paper was designed to adapt Korpi’s
empirical approach and test her model in a real scientific domain with practicing scientists
as subjects.

V. STUDY OF CATEGORIZATION IN A BIOLOGICAL DOMAIN

Empirical Approach

The present study investigates the cognitive processes involved in categorization tasks
performed with conflicting data in the scientific domain of plant taxonomy. The catego-
rization problem used in the current study is a variation of the task used by Korpi (1988)
in her category identification study. A subject (an expert taxonomist in this case) is
presented with a sequence of examples and counterexamples of an unnamed category, and
tries to determine what that category is. As in Korpi (1988), the categories used in the task
were realistic and meaningful (i.e., categories whose recognition relies on the possession
and application of extensive background knowledge).

To introduce elements of surprise, the categories were defined “ad hoc” (as in Korpi’s
study) and were defined by unusual botanical attributes; the categories didnot correspond
to pre-established taxonomic groupings known by the subjects (more details to follow in
Section 5). Our goal was to experimentally create a situation of inconsistency between
empirical evidence and subjects’ theories or expectations.

Given the complex and knowledge-intensive nature of the task, and the relatively little
research conducted previously on similar issues, an exploratory investigative approach,
similar to the one used by Korpi, has been used. This approach involves the collection and
systematic analysis of large amounts of protocol data. The subjects were allowed to
respond freely and were asked to think aloud as they solved the classification tasks. In fact,
the study is focused on the processes involved in subjects’ categorization, that is, on how
scientists explore their background knowledge and attempt to cope with the unexpected
situations that arose in the task. The aim of this investigative approach is to obtain, from
the analysis of the resulting reports, a data-grounded description of subjects’ categoriza-
tion behavior.

In the rest of this section we discuss in more detail the peculiarities of our empirical
approach, and the validity of the categorization task we used to experimentally replicate
taxonomic revision.

Professional Scientists Working on Their Area of Expertise.Previous psychological
studies of scientific reasoning have applied one of the following empirical approaches:

1. The analysis ofhistorical recordsof important scientific discoveries (e.g., Kulkarni &
Simon, 1988; Tweney, 1989). Historical records are indeed an invaluable source of
information, but as noted by Klahr et al. (1990), they can only provide a coarse-
grained view of the scientists’ reasoning processes. Further, the availability of detailed
and meaningful records of relevant discoveries is rather limited.
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2. The use ofsimulated contextsfor scientific discovery where subjects are faced with a
task that is analogous to a real scientific situation (i.e., laboratory studies of scientific
discovery as most of the ones we saw in Section 3). This approach allows researchers
to isolate relevant aspects of discovery and to study in detail the cognitive processes
of subjects doing the “discovery.” The obvious shortcoming is that the discovery tasks
used in these simulations will only be analogous to science rather than being “real”
science (Klahr et al., 1990).

3. A new alternative approach involves the study of discoveries while they are taking
place inreal scientific contexts(e.g., Dunbar’s, 1995 “in vivo” studies; see Section 3).
This approach, though interesting and in many ways desirable, suffers from obvious
practical limitations.

In our study, we have opted for a simulated approach, but our categorization task
differs in important ways from prior laboratory studies of scientific reasoning. In fact, the
majority of simulated studies have typically focused on the reasoning processes of
nonscientists (generally college students) as they solve pseudoscientific problems. Further,
those studies that have looked at the performance of “real” scientists have used tasks that
are not related to the subjects’ scientific expertise. But, as we saw in previous sections,
scientists’ prior experience in their domain seems to be a relevant factor to understand the
way they reason. Therefore, our study looks at the reasoning of expert scientists (bota-
nists) as they solve a problem that requires the use of their professional expertise. In our
study, subjects conduct a task that is closely related to their real life scientific activities.
We thus view our approach as a compromise that combines the benefits of a controlled
empirical setting withsomeof the advantages of studying the cognition of “real” scientists
doing “real” science.

Validity of the Categorization Task.In (Alberdi & Sleeman, 1997) we presented a
framework for the automation of taxonomic revision in biological domains. This frame-
work has partly guided the design of our psychological study as well as the algorithm of
ReTAX (see Section 7). According to this framework, taxonomic revision is necessary
when:

1. A taxonomy is complete and consistent but the description of a specimen to be
accommodated in the taxonomy is not; hence the description of the specimen must be
changed.

2. A specimen is completely described but it is inconsistent with a taxonomy that is
incomplete or obsolete; hence the taxonomy must be modified to accommodate the
item.

3. Both the specimen and the taxonomy are incompletely/inconsistently described; hence
both must be modified to resolve the inconsistencies.

To make the study of taxonomic revision tractable in a simulated setting we have
concentrated on the situation where the item is correctly described and the taxonomy is
inconsistent (i.e., situation 1 above). For this reason, ad hoc categories have been utilized.
Because the to-be-learned categories are inconsistent with the conventional groupings of
the items, subjects’ “theories” are challenged; hence subjects are forced to look for
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alternative explanations. Arguably, the use of “ad hoc” categories may impose artificial
constraints in the task (the subjects may find the groupings “unnatural” or “counterintui-
tive”). However, we believe this is a realistic way to simulate in a laboratory situations
that arise in real taxonomic practice; for example, the discovery of new puzzling items that
force taxonomists to reconsider previous classifications (see Sokal, 1974, for examples of
similar “conceptual changes”). A representative example of such a situation is Middleton
and Wilcock’s (1990) revision of generaPernettyaandGaultheriain the botanical family
Ericaceae; the discovery and exhaustive study of new specimens led taxonomists to
modify the conventional descriptions of those two genera and to eventually rearrange the
taxonomy, merging the two genera into one.3 In our view, the task in our study is not so
different from those situations in which taxonomists discover novel information about
specimens (e.g., previously unknown biogenetic facts) that forces professionals to gen-
erate alternative groupings for already classified items; or from situations in which
unusual, previously unknown specimens (e.g., specimens discovered after exploration of
the deep sea) challenge established classifications.

Additionally, although the to-be-learned groupings of the botanical items in our study
were viewed as unnatural or artificial by our subjects, we have reasons to be believe that
these groupings were not totally unrealistic. For example, one of the categories in our
study (Category 2) was conceptualized by the feature “contour of the leaves” (all the
positive instances were “plants with entire leaves”). All the training items used for that
category belonged to the botanical family Cruciferae. Our subjects found that “contour of
the leaves” was an unreasonable character to make distinctions among members of the
Cruciferae family. For example, one of the subjects reported, laughing, that the character
was “fairly well distinguishing your category; but botanically it’s terrible!.” However, it
is interesting to note that there was a discrepancy between the two floras consulted to
assess the subjects’ background knowledge. In (Clapham, Tutin, & Warburg, 1962), the
contour of the leaves is not reported as a discriminating feature among taxa in the family
Cruciferae; further, leaf characters are only used occasionally to make distinctions among
some species. However, Stace’s (1991) flora, which is considerably more recent, gives a
bigger emphasis to leaf characters; it actually presents the contour of the leaves as a
discriminating feature among genera of the Cruciferae family. Subjects did not seem to be
aware of this development in the description of the taxa in family Cruciferae. This
suggests that Clapham et al.’s flora reflects more accurately subjects’ background knowl-
edge, which is understandable, if we consider that the year of publication of this flora is
approximately contemporary to most of the subjects’ training as botanists (as we will see
below, their age ranged from 40 years to 65 at the time of the study).

As was evident earlier in this section, items are presented to the subjects as preclas-
sified examples. In other words, subjects are faced with a “supervised” classification task
(Fisher & Langley, 1990). Arguably, scientific classification can be viewed as an “unsu-
pervised” task; that is, a taxonomist searches for relationships among objects for which a
classification is yet unknown. However, as noted above, we are addressing the conceptual
change that occurs when an established taxonomy is challenged by novel specimens that
are completely described. We believe that a supervised approach reflects more appropri-
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ately this process. Additionally, we believe that the unsupervised task has some strong
relationships with the task we have studied. However, we also believe it is highly desirable
that a further empirical study, involving unsupervised learning, should be undertaken.

In Alberdi & Sleeman, 1997, we also outlined several activities that are part of
taxonomic formation (and revision), namely: 1) exhaustive observation of specimens, 2)
identification of the relevant descriptors to represent the taxa, 3) grouping specimens in the
appropriate taxa, and 4) use of domain knowledge. In the current study we have essentially
focused on process “2.” In summary, the main focus of our study is the revision of the
taxonomic criteria by which objects in a given taxonomy are either grouped together or
differentiated from each other. Discussions we have had with working taxonomists have
corroborated that this is indeed a crucial (and demanding) taxonomic activity.

Method

Subjects.Five expert botanists volunteered to serve as subjects. They were all graduates
in Botany or Ecology, with a varied range of professional backgrounds and interests; all
of them had been involved in plant identification and classification tasks during their
professional life. Three of the subjects were female and two were male. Their age ranged
from 40 years to 65 at the time of the study.

Procedure.The subject was firstly familiarized with the think-aloud procedures of
Ericsson and Simon (1984) and with the characteristics of the categorization problem
she/he was to deal with. With that purpose, the subject was faced with several small
cognitive problems (warming-up tasks) that allowed her/him to practice the requirements
of protocol elicitation and the categorization task.

The subject was informed that she/he was going to see a sequence of botanical
drawings that represented positive or negative instances of a particular category. She/he
was told that her/his task was to determine what that category might be. During the
introduction to the task, the subject was told to think aloud as she/he solved the
categorization problem. It was emphasized that the researcher was interested in how
she/he solved the problem, not in the particular answers, or in assessing her/his botanical
knowledge. In fact, the subject was informed that there may be more than one possible
answer to explain the data, and any plausible explanation of the items was acceptable.

The subject was given six different categories to identify, each from a different set of
positive and negative instances. The first item for every category was always a positive
instance. As each item was presented, the subject was told whether it was a positive or a
negative example. The stimuli were shown incrementally, one after the other, but the
subject had all prior items available as she/he worked on each category. After reporting
her/his responses to each of the items, the subject was asked to rate her/his confidence that
she/he has identified the category. Once the subject had completed one set of stimuli,
she/he was told what category the researcher had in mind, before going on to the next
category.

The first stimulus set that the subject saw corresponded to a “practice category” (“Cone
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bearing plants”) that was not considered during data analysis. In addition to the “practice
category,” each subject was asked to identify the following five categories: Category 1,
“Herbaceous plants with flower heads in clusters”; Category 2, “Plants with entire leaves”;
Category 3, “Plants with a fruit in capsule”; Category 4, “Polypetalous flowers”; Category
5, “Plants with the fruit in pappus.”

All subjects were presented with the same sets of stimuli and in the same order.
Interviews were recorded on audio tape for later transcription and analysis.

Stimuli.Each stimulus set consisted of seven to ten items. In every set, half or more of
the items were positive instances (four to six items) and the rest were negative instances
(three to four items in each set).

A stimulus consisted of the copy of a botanical drawing on a 6.753 7.75 inches mount.
Each drawing was accompanied by the name of the species (or genus) of the plant. Each
item represented, in general, the whole plant, together with details of different parts of the
flower and the fruit. The appendix at the end of this paper gives the drawings of three
stimuli used in the study (a positive instance, a negative instance, and a “rogue” for the
category “plants with entire leaves”).

Most of the drawings were obtained from Ross–Craig (1948–1973), which is one of the
most extensive, detailed (and beautiful) graphical studies of the British flora.

Dr. Gordon Smith, an Aberdeen-based plant taxonomist, collaborated extensively in
the selection of the botanical items and categories used in the study. The selection of the
botanical material was guided by the desire to create situations of surprise in the
categorization task, as discussed next.

Generation of Surprise.To generate surprise, we followed essentially the same strategy
used by Korpi (1988) in her category identification study. Similarly to Korpi’s investi-
gation, the categories in the current study are defined by unusual or unexpected links, that
is, botanical descriptors that plant taxonomists do not normally use to classify specimens.
More specifically, the stimuli were selected according to two features: a “dominant”
feature and a “subsidiary” feature. These two features were taken into account with the
intention of introducing a “rogue” item, a potential generator of surprise (equivalent to the
item REFRIGERATORin Korpi’s set of examples reproduced in Table 1). In the following
paragraphs, we describe in detail what we understand by “dominant” and “subsidiary”
features, and by “rogue” item; this description draws on the example shown in Table 2.

A dominant feature is a botanical character that is prominent, obvious and relevant for
discriminatory purposes. It is a feature that a botanist is expected to pay primary attention
to when observing a plant. A subsidiary feature is a feature that is not normally used by
taxonomists to discriminate the items, and is often not as obvious and easily observable
as the dominant one.

For each set of stimuli, one “dominant” feature and one “subsidiary” feature were
selected. The feature that actually characterized each category (i.e., the “to-be-identified
feature”) was the “subsidiary” feature, while the “dominant” feature was used as a
misleading character. The items in each set were arranged in such a way that the first
positive examples possessed both the “dominant” and the “subsidiary” features. The initial
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negative instances, on the other hand, contained neither. Because the “dominant” feature
is more prominent, it was expected that the subjects would start forming their categori-
zation on the basis of this character, probably ignoring the “subsidiary” feature. After the
subjects had seen, at least, two positive and one negative instances of the form described
above, the “rogue” item was presented.

A “rogue” item is either: 1) a positive instance that possesses the “subsidiary” feature,
but does not contain the “dominant” feature; or 2) a negative instance that possesses the
“dominant” feature, but does not include the “subsidiary” feature.

We will illustrate the usage of the “rogue” item and the “dominant” and “subsidiary”
features by examples. In the stimulus set corresponding to the category “plants with entire
leaves,” all the items belonged to family Cruciferae (or Brassicaceae, using modern
nomenclature). In this family, one of the most distinctive (dominant) features is the type
of fruit; an important subgroup within the family has a fruit that is an elongated structure
similar to a pod, a “siliqua.” As illustrated in Table 2, the first two positive instances,
Arabis hirsuta(see illustration in the appendix) andCoringia orientalis, have a “siliqua”
type of fruit, unlike the first negative instance,Coronopus didymus. But the fourth item
(the “rogue”),Erophila verna(see the Appendix), is a positive example whose fruit is not
a “siliqua.” The feature that this instance has in common with the rest of the positive
instances is “the contour of the leaves” (i.e., the “subsidiary” feature). In all the positive
instances, and in none of the negative ones, the leaves are “entire,” that is, have a simple
contour (as opposed to a serrate or lobed contour).

The position in which the “rogue” appeared in the sequence of stimuli of each set was
chosen at random; but always met the constraint, suggested above, that it should appear
after the subject had seen, at least, two positive instances and one negative instance
consistent with the “dominant” feature. This way, the subject was given the chance to
focus on the “dominant” feature before potentially contradictory evidence was presented.

Before the actual psychological study took place, the botanical material was tested on
three independent subjects (two graduate students of botany and an expert plant taxono-
mist). This preliminary pilot study confirmed that the items selected as “rogues” did

TABLE 2
First Seven Items for Category 2

Arabis
hirsuta

Coringia
orientalis

Coronopus
didymus

Erophila
verna (Rogue)

Matthiola
incana

Teesdalia
nudicaulis

Draba
aizoides

Dominant feautre:
Fruit type: siliqua 1 1 2 2 1 2 2

Subsidiary feature:
Leaf contour: entire 1 1 2 1 1 2 1

Classification 1 1 2 1 1 2 1

Note. The items appear in the same order as they were shown to the subjects. The names at the top of
the column correspond to the examples and counterexamples of the category. The (1) signs and the (2) signs
in the next two rows indicate, respectively, whether the items possess or do not possess the given value for
the respective features. At the bottom row, the signs express whether the instances are examples (1) or
counterexamples (2).
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function as puzzling entities, that is, the subjects were misled by the “dominant” features
and found it difficult to recognize the “subsidiary” descriptors.

Data Analysis Procedures

The verbal reports produced by the botanists were analyzed following standard proce-
dures, as described by Ericsson and Simon (1984). More specifically, the analysis of the
protocols was guided by the methodology used by Korpi (1988) in her category identi-
fication study; the problem solving model generated by Korpi in her study was taken as
a reference when analyzing the current data. In fact, one of the goals of the current study
was to explore the similarities and differences between everyday categorization and
categorization of scientific material performed by scientists. Hence, we used Korpi’s
encoding scheme to determine whether the strategies she encountered can account for the
categorization procedures used by the botanists.

The analysis of the protocols was accomplished in several phases:

1. Data preparation, which involved transcribing the protocols, and subsequently pruning
them, and segmenting them into statements.

2. Application and adaptation of Korpi’s encoding scheme. Each statement in the proto-
cols was carefully analyzed and checked against Korpi’s encoding scheme to find a
strategy that could characterize the statement. If such a strategy was found, the
statement was labeled with the name of Korpi’s strategy. When no strategy could be
found in Korpi’s scheme, a new provisional label was created and used to code the
statement. When several statements were found that could be characterized by the new
label, it was decided that a new procedure had been encountered and a description was
elaborated for the procedure.

3. Verification and tuning of the resulting scheme. This was performed in two stages:

● Firstly, an independent coder applied the revised scheme to a sample of the reduced
protocols analyzed in the previous phase. The independent coding agreed with the
original coding in an 87% of the cases.

● Subsequently, the coding scheme was checked by the original coder against the
verbal data that was not used in the previous analyses.

To minimize practice effects, the order in which the protocols were analyzed was
randomized.
In the next section we discuss the strategies that integrate the revised encoding scheme
(Section 6) and the frequency with which each strategy was used by the subjects.

4. Analysis of the role of expertise. This was studied mainly by looking at two aspects of
the subjects protocols: 1) the comments made by the subjects about their experience
with the items in the study, and 2) the botanical information they reported in their
protocols. Further, a comparison was made between the botanical features referenced
by the subjects for the species presented in the study and the information included in
standard botanical texts (Clapham, Tutin, & Warburg, 1962; Stace, 1991) about the
same species. Section 6 discusses the results of these analyses.
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5. A study of the effects of unexpected items. Those strategies that were recurrently
associated with the presence of a puzzling item were noted. Subsequently, a compar-
ison was performed between the number of times those strategies were used while the
subjects were dealing with conflicting evidence and the number of times the same
strategies were used while subjects were dealing with the rest of the items. The results
of these analyses are described in Section 6.

VI. RESULTS OF THE STUDY

The category identification task was considered to be difficult by the subjects. The
individual sessions took between one and a half to two hours. The items that were
designed as “rogues” had, in most of the cases, the effect of creating puzzlement in the
subjects, and, as a consequence, all the subjects found difficulties in suggesting consistent
hypotheses. In fact, only one of the subjects succeeded in providing plausible explanations
for all six categories.

We present, in the rest of this section, the most important findings of our study. A more
detailed account of the results can be found in Alberdi (1996).

Encountered Strategies

In total, 16 of the 20 problem solving strategies listed by Korpi in her encoding scheme
were found in the botanists’ protocols. This subset of Korpi’s strategies (with the minor
modifications made to them by the two coders in this study) accounted for about 88% of
the behaviors coded in the botanists’ reports. Table 3 provides a summary of all the
strategies; both the strategies from Korpi’s encoding scheme and the strategies from the
scheme evolved in the current study. Those strategies that seem centered in the table are
common to both encoding schemes. The strategies that appear aligned on the left hand side
of the table were reported only by Korpi and were not found in the current study. Similarly
those strategies that appear on the right hand side of the table are strategies only
encountered in the protocols of the botanists and were not reported by Korpi.

As shown in Table 3, the different strategies were grouped in the following categories:

● Basic Approach. This category was used by Korpi to characterize a standard
generate-test procedure that involved two strategies:Spontaneous Activationand
Apply. The former strategy refers to the activation of easily accessible information
about the items; the latter involves testing the hypotheses derived from such activation
of information by applying them to other items. TheApply strategy has now been
recategorized as a Hypothesis Testing procedure (see Table 3). Further, we did not
find any evidence of “spontaneous activation” in the botanists’ protocols. In the
current study, subjects’ activation of information seemed to be always guided by
search, more specifically by the Basic Search Strategies.

● Basic Search Strategies.The basic strategies used by the subjects involved a search
or activation of information about the items, and a systematic comparison of that
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TABLE 3
Summary of Strategies in Korpi (1988) and Current Study

Korpi’s scheme Revised scheme

Basic approach
Spontaneous activation

Name ideas spontaneously, evoking
information that exists in the knowledge
base and is immediately available.

Basic search strategies
Search-link

Attend simultaneously to a set of the Positive Instances, and try to see a link
among them. Undirected: attend to the Positive Instances in a holistic way,
rather than by focusing on particular features.

Search Instance

Activate info
Focus on a single (Positive) Instance and search one’s knowledge of that
instance. Activate information associated with the instance. Information is not
as easily accessible as with Spontaneous Activation procedure.

Compare
After activating information about an instance, compare this information with
other items to see if it applies to them. Identify and state similarities and
differences among the items.

Alternative search & reorientation strategies
Focus-N

Search for a common link that unites the negative instances. If a link is found,
the reverse or contrasting aspect of the encountered feature is used as a
potential hypothesis to characterise the positive instances.

Request info
When not sure of category: Ask to see another Instance.

Task wiseness
Draw on experience from a prior category to aid in the current situation: refer
back to solutions to previous items and try to apply to current problem.

Shift thinking
Try consciously either to clear the mind and begin again or to switch the focus
of attention to a different set of information.

Scenario
Combine Positive Instances to form a
customised picture that includes all the
required elements. It’s a visual strategy,
often with a narrative, story-like quality. A
generative, creative strategy, which, when
the instances do not fit well, can take on a
patched, forced-fit character.

Reorder I’s
Rearrange (Positive) Instances, physically or
mentally, in order to alter the context in
which they appear; perhaps reveal an
unrecognised relationship among them.

Instantiate
Activate a “theory-driven” schema that
narrows and refocuses the hypothesis space.
Instantiate a generic (“theoretical”) feature
on the data.
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TABLE 3 (continued)

Korpi’s scheme Revised scheme

Organization strategies
Group

Cluster similar Positive Instances and, try to see how the other instances might
fit in. Group and focus on a set of dissimilar Positive Instances and try to find
some connection among them.

Divide
Identify an instance that causes confusion and search for a link between it and
the others. Separate an “unhelpful” instance and set it aside.

Recap
Review one’s state of knowledge. Recap:
• Positive and Negative Instances which have been seen;
• Hypotheses which have been considered or eliminated;
• A line of reasoning

Flexible strategies
Fluid

Suggest several related categories as if they were equivalent (“could be things like
. . .”). The Hypotheses are variation on a theme, which is treated as a single solution.

Loose
Name a Hypothesis with flexible or vague boundaries (“something to do with
. . .”).

Focus context
Place an instance within a conceptual
context: activating a schema for a setting or
for another concept associated with the
instance. Serves to limit or (re)focus search
space; provides some aspect of an instance
to focus on when having lots of possibilities.

Adaptation strategies
Fit-I

Stretch or contort an Instance to make it fit a Hypothesis; e.g., making
convenient assumptions about the data or convincing oneself that the data fit
by stretching one’s interpretation. Not test Hypothesis rigorously on items.
Ignore Negative Instances.

Modify-H
Adjust category boundaries to fit the data:
• Generalise: propose a high-level category that encompasses the hypothesis.
• Specialise: narrow down the category to hone in on the answer.

Hypothesis testing strategies
Apply H

Compare or match Hypothesis with stimuli. Hypotheses can be tested on new
information as it comes; or they can be tested on Instances that had been
presented previously.

Assess
Make a metacognitive judgement about the adequacy of a category. It implies
some sort of “goodness criterion” from the subjects.

Double-check
When already having a hypothesis that fits the data, check for alternative hypotheses.

Reconsider
A sort of backtracking procedure by which a
hypothesis which has been previously rejected
or abandoned is brought again into focus and
tested anew.
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information among the stimuli. Korpi distinguished betweenSearch-linkandSearch-
instance. Search-instancecontains two subprocedures that we named in the current
study:Activate Info, andCompare Instances.

● Alternative Search and Reorientation Strategies.These strategies represent an
alternative approach to the hypothesis generation procedures described above. The
Alternative Strategies are used when the more standard activation and search proce-
dures have failed to generate plausible hypotheses. The alternative strategies common
to Korpi’s scheme and to the revised scheme are:Focus-N, Request Info, Task
WisenessandShift thinking. Additionally, Korpi reported:ScenarioandReorder I’s
(not encountered in the botanists’ protocols). In the revised scheme we have included
a new strategy not reported by Korpi:Instantiate.

● Organization Strategies.When the subjects have seen several items, have proposed
and rejected several hypotheses, or have followed several lines of thought, they often
feel the need to order this information. The purpose of the Organization Strategies is
to arrange systematically the collected information to make it more manageable. We
have distinguished three Organization Strategies:Group, Divide andRecap.

● Flexible Strategies.These represent a hypothesis generation style by which a subject
sets imprecise constraints on the search and formulation of the hypotheses. The use of
these strategies indicates that the subject has a general idea of what the category might
be, but cannot express with precision what exactly defines it. The Flexible strategies
are:Fluid andLoose(common to Korpi’s scheme and the revised scheme) andFocus
context(only reported by Korpi).

● Adaptation Strategies. The function of the Adaptation Strategies is to eliminate
minor inconsistencies between the hypotheses and the data. The result of these
procedures is either a reinterpretation of the stimuli to make the data conform with the
proposed hypothesis (Fit-I strategy), or a minor modification of a hypothesis that
partially fits the data (Modify-H).

● Hypothesis Testing Strategies.The botanists used two types of procedures to test the
validity of the generated hypotheses: procedures applied to confirm or refute a
hypothesis by matching it with the data (Apply H and Reconsiderstrategies); and
procedures utilized to check whether a hypothesis is the best to characterize the data
(AssessandDouble-checkstrategies).

Table 3 shows a fairly broad characterization of the strategies. We would like to add
further points to clarify the three strategies that we consider to be of particular signifi-
cance; that is, the two strategies most frequently used by the botanists (i.e.,Activate Info
andCompare Instances), and theInstantiatestrategy, which is especially relevant to the
main topic discussed in this paper (the role of unexpected observations).

As we will see later in this section,Activate Infowas the most frequently used strategy
by the botanists. This strategy is generally used when an item is presented for the first time
to the subjects. It consists of focusing on an instance and activating information associated
with it. The subjects normally activate information about: 1) a higher level botanical taxon
to which the item belongs (in general, information about the botanical family); 2) the
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position of the instance with respect to major botanical groupings that are determined by
features like: plant habit, life cycle, general structure of the plant, geography, and so forth;
3) details of the different parts of the plant: flower, fruit, leaves, stem, and so forth. This
information seems to be either generated from a close observation of the different features
in the drawings, or inferred from the taxonomic knowledge possessed by the subjects
about the botanical taxa to which the items belong.

Another very frequently employed strategy,Compare Instancesis used when the
subjects have seen more than one item. In general, immediately after they have activated
information about an instance, subjects compare this information with other items to see
if it applies to them. In this way, the subjects establish between the items similarities and
differences that will be the basis of many of the hypotheses proposed. Interestingly, the
subjects in our study used quite frequently two types of comparisons that were seldom
reported by Korpi (1988), namely: the search for similarities between negative and
positive instances; and the search for differences between negative instances.

The Instantiatestrategy deserves special attention as it is typically used when subjects
have seen a puzzling item (normally, the rogue) that challenges all their previous
hypotheses. It can be described as a specialization or variation of the Focus Context
strategy described by Korpi (see Table 3 & Section 4). However, although these two
strategies are related, no evidence of theInstantiatestrategy was found in the protocols of
Korpi’s subjects.

As occurs with Focus Context, when usingInstantiate, subjects activate a conceptual
schema that narrows and refocuses the hypothesis space they are searching. Korpi
describes Focus Context as follows: “This strategy provides a way to set parameters on the
search space without overly constraining it. It focuses the subject’s attention on a
particular aspect of the data, but allows room to maneuver while looking for a snug fit of
hypothesis to data” (Korpi, 1988; p. 68).

However, whereas the Focus Context strategy involves a more focused search of the
data, usage ofInstantiateinvolves an exploration of the subject’s theoretical (taxonomic)
knowledge base. In fact, when usingInstantiate, the schema activated by the subjects is
normally a general botanical aspect that suggests new features to be explored in the data.
The process can be viewed as the instantiation of a generic feature on the data. This feature
undergoes subsequently a progressive specialization, as different specific aspects of the
feature or new related features are explored. A typical example of this process can be
viewed in one of the subjects’ reaction to a conflicting item (the underlined statements
correspond to the aspects of the subject’s report where we can see her usage of the
strategy): “This is in the category? Oh! This really does puzzle me, because again,. . . well,
it’s got the branched flower stem, but totally different flower head (. . . ). So they all don’t
have a joined corolla. I still don’t see, because these two have two different types of
florets; these two don’t have that distinction (laughs). Unless it’s something to do with the
fruits. I’m trying to see if the fruits are different. These are nutlets. . . It’s nothing to do
with pollination, really (. . . ). They’re not all wind dispersed. . . .” After seeing a stimulus
that contradicts her previous category, the subject seems to be instantiating a schema that
involves the feature “fruit.” Focusing on this generic aspect of the plant leads the subject
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to explore more specific features associated with the fruit, for example, fruit type (whether
fruits are “nutlets” or not) and pollination.

When usingInstantiate, the subjects think first of a feature (probably suggested by their
taxonomic knowledge) and then instantiate it against the data to see if it applies. In
general, when applying this strategy, the subjects normally propose features that have not
been mentioned before. The subjects seem to be instantiating a conceptual schema that is
originated by their domain knowledge. Expert knowledge about the hierarchical relation-
ships among the items and about the different degrees of discriminatory relevance of the
botanical characters suggests to the subjects some new aspects to be considered.

Frequency of Strategy Use

In this section, we provide a brief quantitative characterization of strategy use. Table 4
presents a comparison of strategy use between the botanists in the current study and the
subjects in Korpi’s (1988) study. We show, in terms of percentages, the comparative
frequency of use of some of the strategies (or groups of strategies) that are common to the
encoding schemes used in both studies.

We can see from Table 4 that in both studies the most frequently used strategies were
activation/search and hypothesis testing (Apply, Assess, Double-check, and Reconsider)
procedures. However there is a big difference in the usage of both strategies in the
protocols of the respective studies. Korpi’s subjects used testing strategies more often than
the botanists in the current study, and more often than the activation/search strategies. On
the other hand, the use of activation/search strategies were favored by the botanists to the
extent of representing more than half of the codes in their protocols. No single strategy
type accounts for an equivalent proportion of the codes obtained in Korpi’s study. On the
contrary, her subjects’ activities were distributed across a larger number of strategies and
they dedicated more time on strategies not involved in either hypothesis generation or
testing. In particular, Adaptation, Organization, and Flexible (Fluid, Loose) strategies
were used more frequently by Korpi’s subjects (in total, 24.07%) than by the botanists (in

TABLE 4
Comparison of Rates of Strategy Use

[Korpi (1988) & Current Study]

Strategies
Korpi (1988)

(n 5 925)
Current study
(n 5 1330)

Activation/search 25% 60.15%
Apply/checking 34.70% 16.02%
Instantiate — 8.87%
Reconsider — 3.76%
Adaptation 12.65% 3.23%
Organization 8.86% 2.56%
Fluid/loose 2.56% 0.83%
Context/scenario 6.39% —
Other 9.84% 4.58%
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total, 6.62%). Finally, it is interesting to note that there is a relatively small difference
between the usage ofInstantiatein the current study and the usage ofFocus contextand
Scenario(see “Context/Scenario” in Table 4), which are the equivalent strategies in
Korpi’s encoding scheme.

These differences in frequency of usage between the two studies can be attributed, on
the one hand, to the bias introduced in the current study by the background of the subjects,
and, on the other hand, to differences in the types of stimuli used in the studies. The
background knowledge bias can account for the botanists’ preference of activation/search
over hypothesis testing procedures. In particular, the botanists made a very extensive use
of item comparisons, which is an essential activity in taxonomic practice, and can be
viewed as an indirect way of testing hypotheses; these subjects seemed to prefer an
item-to-item matching rather than a hypothesis-to-data matching. Finally, the items in
Korpi’s categorization task were linguistic stimuli related to everyday experiences (see
Section 4) and we suspect that these led to a higher degree of ambiguity than the botanical
drawings used in the current study. These ambiguities could explain Korpi’s subjects more
frequent use of procedures like Fluid/Loose and the Adaptation Strategies.

Influence of Background Knowledge

The description of some of the strategies in this section (see Table 3) suggested that
subjects’ behavior was affected in important ways by their expert knowledge. This was
especially apparent in the description of the following strategies:Assess, Activate Info, and
Instantiate.

As the analysis below shows, the results from our study are essentially consistent with
the findings of prior investigations that looked at the effects of prior knowledge in concept
learning (see Section 3). More specifically, subjects’ expertise had the following effects in
their categorization behavior: 1) facilitate hypothesis testing, 2) constrain and shape the
feature search space, 3) recognize a new item as a member of a superordinate botanical
taxon, and 4) refocus the search for distinguishing features. We explain each below.

1. Facilitate subjects’ hypothesis testing. A specific and well-established mental model of
botanical taxa seemed to provide subjects with criteria to assess the validity of the
hypotheses generated. This is reflected in subjects’ use of theAssessstrategy (see
Table 3).

2. Constrain and shape the feature search space. This is the most obvious influence of
expertise in the botanists’ categorization performance. Subjects’ search focused on a
small and relevant subset of the innumerable characters that can be used to describe
a botanical item. If we look at the botanical drawings reproduced in the appendix, we
can see that there are a large number of elements that can be taken into account to
describe the items. The drawings contain information about different parts of the plant,
normally: flower, fruit, leaves, and stem. Several different features can be activated
(e.g., type, shape, size, structure, etc.) about each of these parts of the plant. Further,
each part of the plant is composed of a number of subparts; for example, the flower
is composed by petals, corolla, sepals, calyx, style, stigma, filaments, ovules, ovary,
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and so forth The same applies to the fruit, the leaves and the stem. Additionally,
further aspects can be considered for each of these subparts (e.g., type, position, color,
size, shape, etc.) and about the relationships between them (e.g., size of the corolla
with respect to calyx size; position of the ovary with respect to the calyx, etc.).
Obviously, while solving the categorization task, subjects considered only a small
subset of all those possible characters. This influence of background knowledge is
consistent with the “knowledge-as-selection” view of concept learning (see Section 3).

3. Recognize a new item as a member of a superordinate botanical taxon. The ability to
select taxonomically relevant features seems to result from subjects’ ability to recog-
nize new items as members of a particular botanical family. When describing the
strategyActivate Info(Section 6.1), we noted that a type of information that subjects
typically activated was the name of the family to which the item belonged. Further, as
reported in Section 5, a comparison was made, during the analysis of the protocols,
between the features activated by the botanists and the characters described in
well-known standard floras. As a result of this comparison, a correspondence was
established between the type of features considered by the botanists for a given item
and the information reported about that item in the botanical texts. Normally the
subjects tended to concentrate on those aspects of the botanical species that, in the
floras, are used to describe the families in which the species belong. Also the order in
which the features were mentioned during the study tended to coincide with the order,
or relative emphasis, with which those features are reported in the botanical texts. In
summary, by locating the items in the context of pre-existing hierarchical knowledge,
subjects were able to infer features that were not perceptible in the stimuli, and to
interpret visual characters in meaningful ways. Previous studies that explored the
influence of general background knowledge (Wisniewski & Medin, 1994) and domain
specific expertise (Chi et al., 1989; Ritter, 1992) in concept learning also emphasized
the importance of activating information about superordinate categories (see Section
3).

4. Refocus the search for distinguishing features. We saw earlier in this section that
subjects used theInstantiatestrategy when an item (typically the rogue) could not be
properly categorized according to the originally activated features. When using this
strategy, subjects refocused their search for descriptors by further exploring their
botanical knowledge. As suggested earlier, theInstantiatestrategy involves a detach-
ment from the data by which subjects explore features at a theoretical level. This
refocusing process is of particular interest to understand how subjects coped with
surprise in the task. The following section discusses this process in further detail.

Influence of the Rogues in Strategy Use

There is a series of strategies that subjects typically used to deal with conflicting evidence.
The strategy that was used most frequently by all subjects was theInstantiatestrategy.
Only on three occasions where a subject was dealing with an unexpected item, was
Instantiatenot applied. Furthermore, in most of the cases, this strategy was used only
when a subject was presented with a puzzling item, or when dealing with the items
presented immediately after.Instantiatewas used only occasionally (less than 15% of the
times) to deal with items that appeared in a stimulus set before a surprising item was
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presented. Because the presentation of a puzzling observation challenges a subject’s
previous hypotheses, it is reasonable thatInstantiateis the favored strategy. As described
earlier, the function ofInstantiateis to refocus the search for descriptors to find alternative
categorizations. Consistently, the second most frequently used strategy, in cases of
conflicting evidence, wasShift Thinking, which also involves a reorientation in the search
for features. Similarly toInstantiate, Shift Thinkingwas only detected in the protocols
when a subject had been shown a puzzling observation.

Other procedures that were applied by the subjects when dealing with conflicting
evidence were, in decreasing order of frequency of use:Focus-N, Organization Strategies
(Group, Divide, andRecap), and the strategyModify-H.

It is interesting to note that, on some occasions, an intended rogue was not perceived
as a surprising observation. In such cases, subjects used the following strategies: Basic
Search Strategies (Activate InfoandCompare Instances), Apply H, Modify-H, andFit-I .
The usage of Basic Search Strategies, and the strategiesApply HandModify-H, indicates
that some of the hypotheses held by the subjects before the intended rogue was presented
were not completely invalidated by the item. These hypotheses could be maintained, or
simply adapted with minor modifications. The usage ofFit-I is a sign that, in some cases,
a subject failed (or refused) to perceive the inconsistency between the rogue and an invalid
hypothesis. In those cases, subjects distorted or ignored the facts (use ofFit-I ) that would
challenge their hypotheses.

We presented in Section 3 a summary of the most important strategies encountered in
studies of scientific reasoning that looked at people’s reactions to anomalous data. Briefly,
these strategies are: 1) disregard the negative evidence, 2) reinterpret the data in conve-
nient ways, 3) adapt a hypothesis to the new data, 4) focus on the negative evidence and
try to explain why it cannot fit a hypothesis.

The results discussed in the previous section suggest that the botanists tended to apply
similar strategies. The use ofFit-I (see Table 3) involves either ignoring aspects of the
items that challenge a subject’s hypothesis (i.e., disregarding contradictory information) or
making convenient assumptions about the data so that they can fit the hypothesis (i.e.,
reinterpreting the data). We have seen thatFit-I was used when subjects encountered an
intended rogue that actually invalidated hypotheses they had proposed earlier; as a result,
the potentially surprising effects of the item were diminished. Similarly, the application of
Modify-H involves hypothesis adaptation procedures that are equivalent to the minor
modifications performed by subjects in previous studies (i.e., generalization or special-
ization of hypotheses). Finally, the use ofDivide clearly corresponds with the strategy of
focusing on an anomaly and searching for an alternative explanation. When applying
Divide (see Table 3), subjects isolated the anomalous item and tried to look for new
connections between it and the rest of the instances. However,Dividewas not the strategy
most frequently used by the botanists when trying to find new explanations for the data.
They, in fact, usedInstantiate and, to a lesser extent,Shift Thinking. Both of these
strategies denote a conscious effort from the subjects to look at data in new ways.

The Instantiatestrategy deserves a more detailed discussion. This strategy represents
an approach to coping with puzzling evidence that has not been encountered in previous
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research of scientific reasoning. When usingInstantiate, subjects search their background
knowledge to identify new features that can account for a surprising item. This search is
performed independently from the visual features perceived in the stimuli. This indicates
that subjects are actually relying on their expert knowledge to identify new relationships
among the data. The subjects seem to momentarily ignore the items and perform their
search at a theoretical level. They first search for alternative explanations on the basis of
their prior experience with the botanical taxa involved, and then instantiate those features
against the data.

We saw, in Section 3 that previous studies of scientific reasoning have not sufficiently
emphasized the role played by scientists’ expertise in the strategies they use to cope with
surprise. For example, Klahr et al. (1990) saw that the subjects that succeeded to shift the
focus of their explanations about BigTrak, did so because they performed additional more
focused experiments with the robot. The results of these experiments then allowed the
subjects to propose new alternative hypotheses. In other words, successful subjects in this
study explored the “experiment space” to encounter novel explanations. These results
were consistent with previous findings from Klahr and Dunbar (1988) who encountered
that when search in the “hypothesis space” failed, subjects switched to explore the
“experiment space.” However, the task given to the subjects (college students) in these
studies did not require subjects expertise. Generally people do not have specialized
knowledge about “robots.” Even if they had some notions about mechanical devices in
general, the initial hypothesis space they could explore was, of necessity, very limited. In
contrast, subjects in the current study, because of their expertise in botany, could in
principle explore a larger hypothesis space without looking at the instances, that is,
without exploring the experiment space (or, more appropriately, the “instance space”;
Simon & Lea, 1974).

VII. A MODEL OF INDUCTIVE CATEGORIZATION IN A
SCIENTIFIC DOMAIN

The empirical findings described in the preceding sections have been integrated and
organized to generate an information processing model of subjects categorization behav-
ior. The purpose of this model is to form a coherent picture of the problem solving
activities undertaken by the subjects as they solved the several tasks in the study. The
model represents the general sequence of steps followed by the subjects. It contains
information about the interrelationships among the major problem solving procedures, and
shows, additionally, the interaction between subjects’ background knowledge and strategy
use. The model is meant as an abstraction of the different cognitive processes detected in
the subjects’ protocols, that is, a typical pattern of steps in subjects’ problem solving.
Inevitably, some individualistic aspects of subjects’ performance have been overlooked.
Although the subjects’ problem solving behavior normally followed the sequence of steps
represented in the model, their protocols reflect a more fluid and flexible approach that is
difficult to reproduce in a general schema like this. This model is an adaptation of an
equivalent model generated by Korpi (1988) to explain her data.
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A flow chart of the generalized model is presented in Figure 1. The elements repre-
sented in the diagram correspond to: typical steps in the problem solving process (i.e.,
application of strategies and implicit decisions), knowledge sources (inferred from sub-
jects performance), and knowledge structures such as hypotheses and stimuli. Normally,
the results of the implicit decisions are marked in the diagram with a lower-case letter in
parentheses. This notation will be used below, in the description of the model, to indicate
the location of those steps in Figure 1.

The different elements in the diagram are connected by links. A link indicates either
flow of control (i.e., a connection between two processes), or flow of information (i.e., the
flow between two data structures, or between a data structure and a process). Regardless
of the type of flow, the arrows can be either unidirectional or bi-directional. Bi-directional
links denote a reciprocal interaction between the connected elements.

Those elements in the graph (either arrows or boxes) that are marked with dotted lines
represent behaviors that occur only occasionally or appear only in the protocols of a subset
of the subjects.

It was noted, during the rating of the protocols, that certain strategies tended to be
closely related with each other, and often appeared contiguously. In particular, two groups
of strategies have been identified and isolated: one such group is formed by the strategies
Activate Info, Compare, and Apply H; and the other byInstantiate, the rest of the

Figure 1. Information–processing model of category identification in biological domain.
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Alternative Strategies, and the Organization Strategies. To reflect the relative arbitrariness
generated by the close interconnections between procedures, each of the two sets of
strategies mentioned above has been represented in Figure 1 within a thick outlined
rectangle. A link directed to one of these boxes indicates that the next step will be one or
more of the strategies included in the box in an undefined order. Similarly, a link
originated from one of these general frames indicates that the previous step may have been
any of the strategies (or sets of strategies) represented within the box.

A description of the model follows. When the first item is presented, the subjects
activate a series of features that they observe in the botanical drawing (box “Activate Info
” in Figure 1). The aspects of the plant on which the subjects focus are partly determined
by their general background knowledge. The features observed in the botanical drawing,
together with the information provided by the name of the plant, often lead the subjects
to activate other aspects of their general botanical knowledge (hence the bi-directional link
between the boxes corresponding to “Activate Info” and “General Background Knowl-
edge” in the diagram). One type of information that is generally activated by the subjects
is the botanical family of the item. If the subjects are familiar with this botanical taxon,
then “Specialized Knowledge” is activated. This newly activated knowledge, in turn, helps
the subjects focus on new aspects of the stimulus (bi-directional link between “Activate
Info ” and “Specialized Knowledge” in the figure). Subjects may formulate all the
activated features as potential hypotheses or choose a preferred one.

When a new item is presented, the subjects normally test it (by usingApply H) against
the hypothesis(es) named after seeing the previous item(s). Additionally, regardless of
whether this testing confirms or not the hypothesis(es), subjects normally activate new
features about the plant (“Activate Info”) and compare this new information with the
equivalent information associated with the previously presented item(s) (“Compare”).
After applying these strategies, a subject is often faced with three different situations: 1)
there is a hypothesis (or set of hypotheses) that matches the data (marked as (a) in Figure
1); 2) there is a hypothesis that matches somewhat the data (d); or 3) the subject has no
hypothesis (e), because the previously formulated hypotheses have been disconfirmed by
the new item and the new activation’s and comparisons have not led to a new plausible
categorization.

If a subject has a strong hypothesis that fits the data (b), the hypothesis is simply
formulated and the subject waits for the next item. But it is quite often the case that,
although the subject has a working hypothesis that fits the data, this hypothesis is still not
particularly strong because the subject has not seen enough items (c). In this case, the
typical approach is to set aside the previously named hypothesis(es) and search for new
features in the stimulus. This search for new information is normally pursued by a new
cycle of feature activation and item comparison. The resulting information will then be
tested (by usingApply H) on all the data. If new plausible hypotheses are generated as a
result of this new search, they will be formulated (often together with previously set aside
weak hypotheses). If no new working hypothesis is produced, the previous weak hypoth-
esis will be formulated as a provisional categorization.
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When a hypothesis fits a new item only partially (d), the subject will either reinterpret
the data or adapt the hypothesis (using “Fit/Modify”). This new version of the hypothesis
will then be tested (link to “Apply H”). If it is consistent with all the data (a), it will
normally be formulated as the hypothesis, especially if it has enough strength (b).

When a hypothesis is disconfirmed by a new item (e), the next typical step is the
application of theInstantiateprocedure, the most prominent of the strategies shown in the
next step that is represented as a thick lined box in the figure. TheInstantiatestrategy
implies a search for features at a theoretical level, so (as indicated by the links shown in
the diagram) it is influenced by the subjects’ general background knowledge, and, more
frequently, by specialized knowledge about the botanical taxa associated with the stimulus
set. Additionally, the subject may also apply other Alternative Strategies (normallyShift
Thinking and Focus-N), and some Organization Strategies (especially after being pre-
sented with a number of positive and negative instances). As a result of the application of
all these different strategies, the subject may have obtained a tentative hypothesis (f).
Again, this tentative hypothesis will be tested on the rest of the data, and if it is consistent
with all positive and negative instances (a), the subject will present it as a new hypothesis.
If no new possible link is found after the application ofInstantiateand/or its associated
strategies, the subject will probably attempt again theInstantiatestrategy (h), generating
a cycle of knowledge instantiations until a tentative hypothesis is obtained. (This cycle
might be broken occasionally by the application of other strategies: Alternative Strategies
or Organization Strategies). Alternatively, the subject might wait for new information to
arrive (i). If no new information is available (i.e., the subject has been presented with the
last item of the set), theInstantiate procedure will be used again until a possible
hypothesis is encountered. If, finally, the search fails (k), as no new alternative features are
encountered, the subject will give up.

Table 5 presents an algorithm that reproduces the main steps depicted in the flow-chart.
Two main procedures have been distinguished in the algorithm. On the one hand,
DEAL-WITH-FIRST reproduces the steps followed by the subjects when dealing with the
first item of each stimulus set (always a positive instance). On the other hand, DEAL-
WITH-NEW contains the steps followed for other items in the set. Those procedures that
correspond to individual strategies (e.g.,Activate Info) appear in Table 5 in bold straight
(as opposed to italics) characters. Those procedures that correspond to either a set of
decisions (i.e., correspond to rhomboids in Figure 1) or a set of strategies (i.e., the
thick-outlined rectangles in Figure 1) appear in Table 5 in capital letters and underlined
(e.g., DECIDE-HYPOTHESIS-FIT OR STANDARD HYPOTHESIS GENERATION/
TEST).

A simplified version of the model just described was implemented in a computer
program, Proto-ReTAX (Alberdi, 1996), which simulates the behavior of some of the
subjects as they solved one of the categorization tasks. Some of the mechanisms imple-
mented in this program were subsequently used in ReTAX (Alberdi & Sleeman, 1997), a
prototype system for taxonomy revision. ReTAX receives as input a pre-established
taxonomy and is presented with new items that contradict in some way the original
classification. Using a set of consistency criteria, ReTAX identifies the inconsistencies
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between the new information and the taxonomy. The system then applies a set of
refinement operators to modify the taxonomy and resolve the inconsistencies. In partic-
ular, the procedures that Proto-ReTAX used to reproduce subjects’ “shift of focus” were
adapted and implemented in some of ReTAX’s refinement mechanisms. ReTAX has been
tested on a botanical domain, replicating taxonomic revisions that had been suggested by
professional botanists for the family Ericaceae (Middleton & Wilcock, 1990).

TABLE 5
Algorithm for the Main Steps of the Categorization Model

DEAL-WITH-FIRST item:
1. Activate Info about item
2. Create a hypothesis set with all (or a subset) of the activated features
3. Report hypotheses in the hypotheses-set
4. DEAL-WITH-NEW item, hypotheses-set

DEAL-WITH-NEW item, hypothesis-set
1. STANDARD HYPOTHESIS GENERATION/TEST item, hypotheses-set
2. DECIDE HYPOTHESIS-FIT item, hypotheses set

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

STANDARD HYPOTHESIS GENERATION/TEST item, hypotheses-set
Apply hypotheses-set to item
and/or
Activate Info about item
and/or
Compare item with other items

DECIDE HYPOTHESIS-FIT item, hypotheses-set
1. if hypotheses-set fits all items and is strong

Report hypotheses in the hypotheses-set
2. if hypotheses-set fits all items and is not strong

STANDARD HYPOTHESIS GENERATION/TEST item, hypotheses-set
if no new hypothesis

Report original hypotheses-set
else report new hypothesis

3. if hypotheses-set fits items partially
3.1 Fit item or Modify hypotheses-set
3.2 Apply updated hypotheses-set to item
3.3 DECIDE HYPOTHESIS-FIT item, updated hypotheses-set

4. else SHIFT-FOCUS item, hypotheses-set
if resulting hypotheses-set Þ A

Apply resulting hypotheses-set to item
DECIDE HYPOTHESIS-FIT item, resulting hypotheses-set

else request new item
if no new item

Indicate failure
else DEAL-WITH-NEW new-item A

SHIFT-FOCUS item, hypotheses-set
Instantiate alternative features on item
and/or
Other Alternative Strategies
and/or
Organization strategies
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VII. GENERAL DISCUSSION

In this paper, we have presented the results of a study that expanded an early investigation
of human concept learning (Korpi, 1988) by studying the performances of expert taxon-
omists on an equivalent “discovery” task. The use of puzzling items and ill-defined
categories, as well as the use of protocol analysis approach, characterized this study. In
addition, by focusing on the cognitive processes of experts scientists dealing with a
categorization task related to their area of expertise, the current study brings together
elements of two important areas of human reasoning, namely: 1) the role of expertise in
complex cognitive tasks (in particular, human concept learning); and 2) the influence of
unexpected phenomena on scientific reasoning.

To a great extent, the study of taxonomists’ categorization corroborated Korpi’s
findings. In fact, the majority of the taxonomists’ behavior could be accounted for by the
problem solving strategies encountered in the early investigation. The current findings
reinforce the view of human categorization as the interaction of a complex variety of
strategies and heuristics; as opposed to the traditional views of reasoning based on
simplistic hypothesis generation and testing procedures. Furthermore the use of “unusual
instances,” or “rogues,” has brought into play, in both studies, elements of fluidity and
flexibility frequently overlooked by standard accounts of human reasoning.

Several of the heuristics described in this paper had been encountered in previous
research (see Section 3) but had not been integrated as a coherent model of human
categorization. In the current work, we have articulated this complex set of heuristics in
a model of knowledge-guided inductive categorization. Further, this model has been
central to the design of an AI system, ReTAX (Alberdi & Sleeman, 1997) that has
succeeded in replicating an actual taxonomic revision made earlier by domain specialists.

In contrast with Korpi’s investigation, a novel feature of the current study is the use of
the Instantiate strategy by the taxonomists. This strategy involves a “theory-driven”
search for novel explanations when unexpected phenomena challenge experts’ hypothe-
ses. None of the strategies noted by Korpi account for this type of behavior; and, to our
knowledge, neither do the strategies proposed by prior studies of unexpected phenomena
in scientific reasoning (see Section 3).

The use of theInstantiate strategy implies a pervasive influence of background
knowledge in subjects’ inductive inferences. In fact, our results suggest that inductive
activities are interrelated with background knowledge at different stages of the reasoning
process, namely: 1) hypothesis generation, 2) hypothesis testing, and 3) hypothesis
revision. We saw earlier that a complex interaction between background knowledge/
expertise and inductive inference had already been noted in previous models of concept
learning (Ritter, 1992; Wisniewski & Medin, 1994). Our model suggests that such
interaction may also play an important role in a scientific context. We believe therefore
that our results provide a link between the concept learning literature and the scientific
discovery literature. In fact, both concept learning and scientific discovery are often
viewed as two examples of general human problem solving (see e.g., Langley, Simon,
Bradshaw, & Zytkow, 1987; Simon & Lea, 1974). For example, Simon and Lea charac-
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terized concept learning as an interaction between search in the hypotheses space and
search in the instances space; similarly, Klahr and Dunbar’s (1988) account of scientific
discovery viewed this activity as search in a dual space: the hypotheses space and the
experiment space. The underlying assumption of these approaches is that the mental
processes involved in these tasks are essentially the same as those involved in other
problem solving activities. Scientists, for example, are no longer viewed as possessing
special mental abilities; rather, they are viewed as “general” problem solvers who apply
their specialized expert knowledge to the solution of scientific problems (Feigenbaum,
1977). Unfortunately, many empirical studies carried out to investigate these phenomena
have concentrated on general problem solving capabilities and have overlooked the crucial
role of specialized domain knowledge.

In this context, our data suggest that professional scientists can make use of back-
ground knowledge to generate new hypotheses when previous explanations prove unfruit-
ful. Previous studies generally suggest that background knowledge influences scientific
activity mostly at the hypothesis generation and testing phases but not at the hypothesis
revision phase. According to previous studies, when hypotheses are refuted by data,
scientists turn to further experimentation or closer examination of existing evidence, that
is, to search the experiment space for new explanations (Klahr et al., 1990). In addition,
our data suggest that search of the hypotheses space can play a central role when
refocusing. In fact, new hypotheses often seem to be derived from a close interaction
between background knowledge (e.g., search for alternative hypotheses at a theoretical
level) and data (e.g., instance comparison).

An explanation for the differences between our results and those of Korpi’s study, as
well as earlier studies of scientific discovery, may be the nature of the background
knowledge that is used in the different studies. Whereas Korpi’s investigation and earlier
studies of scientific reasoning rely on the subjects’ common sense knowledge, in our study
we looked at the role of specialized expert knowledge. The background knowledge usually
required in previous studies (including Korpi’s) is either diffuse common sense knowl-
edge based on every day experiences or simplistic theoretical knowledge acquired on the
fly for the purpose of the experiments. In contrast, the knowledge required to perform the
“taxonomic” task in our study is complex specialized knowledge developed after many
years of training and professional practice. Because this specialized knowledge has been
used extensively during many years, experts can use it to suggest alternative explanations
when puzzling data challenge their hypotheses. Interestingly, as noted earlier, when expert
scientists encounter unexpected phenomena in real scientific scenarios, much of their
reasoning is focused not only on proposing new experiments but also on generating new
hypotheses to explain the data (Dunbar, 1997), as has also been concluded by our study.

An open issue is whether our results are distinctive of classification (categorization) or
are in fact generalizable to a wider range of scientific activities. The results of Dunbar’s
(1997) “in vivo” studies of scientific discovery suggest that our results may in fact be
generalizable to wider areas of scientific reasoning. Nevertheless, further investigation is
required, both in “natural” and in simulated settings, to assess in more detail the interplay
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between expert background knowledge and people’s strategies to cope with unexpected
phenomena in science.
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NOTES

1. Recent studies have suggested that Klahr and Dunbar’s dual space search model can be further extended to
include two additional search spaces: the data representation space and the experimental paradigm space
(see Schunn & Klahr, 1995). Thus making it closer in conception to Sleeman, Stacey, Edwards, and Gray
(1989).

2. This list is an adaptation of Chinn and Brewer’s (1992) taxonomy of responses to anomalous data.
3. In fact, we used Middleton and Wilcock’s (1990) data to test ReTAX’s revision capabilities. Using

refinement operators inspired by the results of the current study, the system succeeded in replicating the
revision of generaPernettyaandGaultheria.
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