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Abstract

Hidden Markov models (HMMs) have been successful for modelling the dynamics of carefully dic-
tated speech, but their performance degrades severely when used to model conversational speech. Sit
speech is produced by a system of loosely coupled articulators, stochastic models explicitly represent
ing this parallelism may have advantages for automatic speech recognition (ASR), particularly when
trying to model the phonological effects inherent in casual spontaneous speech. This paper presents
preliminary feasibility study of one such model clakmsely coupled HMMsExact model estimation
and decoding is potentially expensive, so possible approximate algorithms are also discussed. Compa
ison of one particular loosely coupled model on an isolated word task suggests loosely coupled HMMs
merit further investigation. An approximate algorithm giving performance which is almost always sta-
tistically indistinguishable from the exact algorithm is also identified, making more extensive research
computationally feasible. © 2002 Cognitive Science Society, Inc. All rights reserved.

Keywords:Automatic speech recognition; Pronunciation modelling; Loosely coupled hidden Markov
models; Variational approximation

1. Introduction

Most current automatic speech recognition (ASR) systems use a statistical formulation of
the ASR problem, since it has consistently led to performance exceeding purely linguistically
motivated approaches. Atoustic preprocessaonverts the speech waveform into a sequence
of observation vector® = 04, ..., O+, which represents the acoustic evidence upon which
the recogniser makes a decision. The recognisdeooderseeks the valid word sequenBé
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that maximises(W|0) or equivalently maximisep(O|W)p(W). Probability p(O|W) is
provided by amacoustic modeand p(W) by alanguage modelthese models are typically
estimated independently.

This work focuses on the acoustic model. Most current commercial and research systems
use hidden Markov models (HMMs), partly because of efficient algorithms for parameter
estimation and decoding. We assume that the reader is familiar with HMMs. For isolated word
tasks with sufficient training data, a single HMM is trained per word. For tasks with insufficient
data or for continuous speech tasks, an overall HMM is formed for a word or word sequence
using thebeads-on-a-stringgrocedure: HMMs of phone- or phoneme-like subword units are
concatenated according to the mapping from words to subword unit sequences given in the
pronunciation dictionarySubword units may be modelled directly or usamntext-dependent
models such agiphones in which a separate HMM is constructed for each phoneme in the
context of a single preceding and following phoneme.

This approach vyields very good performance when applied to dictated speech (e.g.,
Woodland, Leggetter, Odell, & Young, 199but performance degrades severely when con-
fronted with conversational speech. For example, the DARPA HUB4E Broadcast News Eval-
uation includes both spontaneous and more formal utterances in studio recording conditions:
in 1998 every system performed less well on spontaneous utterances (F1) than more for-
mal, studio speech utterances (RO)IST HUB4 Results, 1999)Our experiments using a
dataset comprising treameword-level transcript recorded in different speaking styles show
that the difficulties are partly associated with changes in the acoustic realisations of words
(as opposed to changes in grammar and vocabul&s)atlar, Nock, & Khudanpur, 2000
Weintraub, Taussig, Hunicke-Smith, & Snodgrass, 198&any researchers hypothesise the
difficulties are specifically related to increased pronunciation change in conversational speech:
the increased variability of phoneme realisations and greater phonetic and lexical deletion may
not be adequately modelled by current implementations of the beads-on-a-string procedure as
discussed in (e.gGohen, 1989Fosler-Lussier, 1999reenberg, Hollenback, & Ellis, 1996
Keating, 1997 Saraclar, 2000 Most pronunciation dictionaries have only one or two pronun-
ciations per word, unlikely to cover all variants in conversational spééehting, 1997)often
the pronunciations included are not even frequent conversational variants, since dictionaries
are often derived from dictated speech or even text-to-speech systems. Thus, there is a stronc
assumption that the statistical subword modelling scheme adequately captures the remaining
variability. However, whilst context-dependent models do acknowledge contextual effects on
the realisation of sounds and mixture of Gaussian output distributions in HMMs may capture
variability in segment realisations, it can be argued that neither technique is a parsimonious
model of these types of change. Further, phone-level HMMs without skip transitwas
unlikely to adequately model phonetic and lexical deletions.

One approach to these problems extends the pronunciation lexicon with multiple, con-
versational pronunciations for each word, possibly weighting variants by probabilities. Un-
fortunately this approach often increasemfusabilityby increasing the homophonous word
sequences which must be distinguished solely through pronunciation and language model
probabilities (e.g.Riley et al., 1999Saraclar et al., 2000Dynamically restricting the set of
word pronunciations to those “appropriate” for each speaker and speaking style is a possibility
but gains have again been limited (ekpsler-Lussier, 19990stendorf, 200D
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A rather different approach is motivated by objections to the fundamental assumption made
by the beads-on-a-string procedure: namely, the assumption that speech can be rigidly se
mented into a linear sequence of (phone-like) segments. Speech scientists, linguists and enc
neers agree the notion of a phoneme or speech segment is not realistiKi(@g, Taylor,
200Q Liberman, 1998 although it has proved an adequate assumption for dictated speech
transcription systems. Speech production studies show that changes in speaking rate, mann
and style can lead to variation in the amplitude of and phase relations between articulatory
gestures; these changes in relative timing underlie the colouring and merging of ‘'segments’ an
the ‘segment-like’ insertions that extended pronunciation dictionaries attempt to capture. Ex-
amples of these effects include feature spreading, @i, T /k aent / — [k aet ], where
ae indicates nasality from the deleted segmg¢nf has coloured the neighbouring vowel,
and asynchronous articulation errors causing stop insertionsV&gMIH /waomt h/ —
[waompt h]. When articulations become more decoupled, as in conversational speech, it
becomes increasingly difficult to describe pronunciation variation at the level of segments.
Motivated bynon-linearor autosegmentaiather thardinear phonological models in linguis-
tics (Goldsmith, 1999)researchers have therefore begun considering methods for modelling
phonological processes that incorporate the more fundamental ideas of asynchrony betwee
articulatory gestures or phonological features (e/gpore, 1996 Rose, Schroeter, & Sondhi,
1996 Russell, 199Y. In particular, several authors advocate a two-stage approach to ASR in
which the acoustic signal is first mapped into an intermediate representation comprising severe
potentially asynchronous feature streams, such as phonologically-motivated distinctive feature
or articulatory parameters; this representation is then modelled using an approach incorporal
ing the notion of asynchrony between feature changes téugkvale, 1994Kirchhoff, 1996
King & Taylor, 2000. Thus, for example, the partial colouring of vowele/ by nasal/n/
is modelled by timing differences in feature changes between the combinatiofis/fand
for /ae/. However, whilst timing changes in different feature tiers may not be fully coupled,
there is still some dependence between the points at which they change.

Papers discussing articulatory or phonological speech representations are ubiquitous (e.c
Frankel, Richmond, King, & Taylor, 20QHuckvale, 1994 Kirchhoff, 1998 Stevens, 2000
for the purposes of this work, such representations are simply thought of as multiple, dis-
crete time series. Fewer papers consider schemes for directly modelling or otherwise incor
porating these representations within a statistical ASR system, althDegily & Erler, 1992
Frankel et al., 200irchhoff, 1998 Richardson, Bilmes, & Diorio, 200&tephenson, 1998
Zweig, 1999 represent recent efforts. The contribution of this paper is to investigate and eval-
uate an approach to modelling multiple time series that are potentalbgly coupledather
than assumed fully or only very weakly coupled as in previous watkhen considers how
these models might be made tractable for use in large vocabulary ASR.

The paper is organised as follov&ection 2outlines the theory of loosely coupled HMMs
and shows several standard speech models are special cases. It then introduces one spec
loosely coupled HMM: theMixed-Memory Assumption Factorial HMIMMFHMM) and
outlines an EM algorithm for estimating MMFHMMSs with multivariate Gaussian observation
distributions. This exact algorithm is potentially computationally costly so the section also
considers approximate algorithms that may be necessary for applying the new models to larg
vocabulary speech recognition taskection Jresents a preliminary evaluation of models and
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algorithms on a standard isolated word classification task. The paper ends with conclusions
and outlines future research.

2. Theory of loosely coupled HMM s

The data to be modelled compris€doosely coupled time series. Observations in each time
series (oistrean) k, denoted¥, 0’5, e, o’;, are produced on the same time-scale and may be
scalars or vectors. Each time series might correspond to an articulator trace or a phonological
feature such as voicing, for example.

Each streant could be modelled independently by using a single HMM per stream and
the resulting likelihoods combined to give an overall score, but this fails to capture coupling
between the different time series. The opposite approach is to combire HdMs into a
joint model: we can form a combined tactorial HMM in which (i) the hidden state space
(or metastatespace) is the Cartesian product of ftiestate spaces of th€ individual HMMs
(seeFig. 1), and (ii) the observation, is a tuple of the individual stream observations at time
t,i.e.,0, = (o}, ..., o). We assume for notational simplicity that each time series comprises
D-dimensional observations.

The combined model just described is equivalent to a standard HMM in which the
states andD-dimensional observations now have internal structure. Howevek, asd N
increase, estimation of output densities and transition matrix fofdbtsrial HMM will be-
come intractable both computationally and in terms of robust parameter estimation. Recent
work in the machine learning and speech literature handles these difficulties through addi-
tional conditional independence assumptions and approximations which exploit the internal,
combinatorial structure of the metastates and observations to reduce the number of parameter
and sometimes as the basis for efficient, approximate training and decoding algorithms (e.qg.,
Ghahramani & Jordan, 199Baul & Jordan, 1999Deng & Erler, 1992 Sun, Deng, & Jing,
200Q Logan & Moreno, 1998 The next section will show that the general factorial or loosely
coupled model contains several standard speech models as special cases under appropriat
choice of parameter reduction scheme; it then discusses parameter reduction schemes leadini
to more general models.

2.1. Special cases of the factorial model

We generalise the presentation in the previous section to dllomderlying Markov chains,
where it is not necessary that = K. Hidden metastates, therefore, compriséhidden

Fig. 1. Metastate space from combined ergodic HMMs A and B.
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variables and are described bytuples/ = (i*,...,il) andJ = (j%,..., j%). Each chain
hasN possible states, again for notational eag3elenotes probability mass functions (pmfs)
over discrete state spacesdenotes densities over continuous observation spaces. Using this
notation, the parameters to be estimated in the factorial modét@d) andp(0O;|J). (For
brevity we omit the parameters specifying the initial distributi(y).)

All parameter reduction schemes considered in this paper make two assumptions:

e conditional independence of metastate components given previous metastate:

L
PUID =[] PG
=1

¢ conditional independence of observation components given current metastate:

K
POy =[] pof1).
k=1

SettingK = L = 1 in this parameter-reduced model gives the standivid/. Setting
L = 1 andK to the number of output streams gives th€K synchronous multiple stream
model(Young, Jansen, Odell, Ollason, & Woodland, 199%ettingL = K plus additional
conditional independence assumptidh&i*[1) = P(j*|i*) and p(o¥|J) = p(of|j*) gives
the asynchronousidependent streams mogdelhich is related to thenultibandmodel (e.qg.,
Mirghafori, 1999. Fig. 2(a—c) illustrate these models as dynamic Bayesian netwoFks.
notational ease, henceforih= K.

Our real interest is in new parameter reduction schemes giving tractable models that car
still capture coupling between thié time series. Many possibilities exist, such as parameter

(a) (®) (©)

s} s}

(d)

o¢ 07

Fig. 2. (a) Hidden Markov model; (b) HTK synchronous multiple stream model; (c) independent streams model;
(d) transition-only coupled MMFHMM; (e) observation-only coupled MMFHMM,; (f) fully coupled MMFHMM.
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reduction through maximum likelihood (ML) parameter tyifdpck, 2001) but in this paper
we adopt theMixed-Memory Assumptiorsf Saul and Jordan (1999 which streamk’s
observatiow* or next statg* is conditioned not on the current metastatelbbtreamsFig. 2
b), nor necessarily just on strears own current stateHig. 2 c), but on the current state of
just one randomly chosen strednfFig. 2f):

e parameterise transition-related conditional probabilities by a convex combination of
cross-transitiormatrices:

K
PG =)y 0a(*1ih (1)

=1

e parameterise observation-related conditional probabilities by a convex combination of
cross-emissiodistributions:

K
pOf|) =" ¢* BN (oF 1. 2
=1

Parameters(j*|i') arek ? elementaryV x N cross-transition matrices, a total §€ N2 tran-
sition parameters. THé“(oﬂj’) areK2N cross-emission output densities; fordimensional
observations and full-covariance Gaussians, a tot&l‘dD(1 + D) observation-related pa-
rameters. Parametetg‘(l), ¢* (/) are mixture weights that indicate how often strearis
conditioned on strearfy They are fixed for a single model, and give a measure of the depen-
dency between different streams, using a total 5f parameters. The MMFHMM, thus, has
O(K?(N? + ND?)) parameters, vers@3(N X (NX + K2D?)) for the general factorial HMM.
Adoption of the Mixed-Memory Assumptions allows separate evaluation of the effects of
making transition- or observation-related probabilities dependent upon full metastate identity,
as well as the case where both are metastate-dependent. We use the following terminology for
these three cases, illustrated as dynamic Bayesian netwdrigs d(d—f). Anobservation-only
coupled MMFHMMsetsy to the K x K identity matrix, i.e., only observation distributions
can be dependent upon metastatesafsition-only coupled MMFHMNMetsy to theK x K
identity matrix, i.e., only transition distributions can be dependent upon metastates. Finally, a
fully coupled MMFHMMis the general case of unrestriciedyr, where both observation and
transition distributions may depend upon metastates.

2.2. Maximum likelihood MMFHMM estimation

ML estimation of the MMFHMM with appropriate choices of observation distribution is
possible using an EM algorithempster, Laird, & Rubin, 197 @ppropriate for the Mixed-
Memory Assumptions. In addition to variables encoding the metastate sequence taken
through the model, the algorithm must reconstruct two new types of latent varighles
(Saul & Jordan, 1999 The new variables encode the identity of the cross-emission distribu-
tion and cross-transition matrix (i.e., the streérhat streank depended on) used in each
streank at eachr (Fig. 3.
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Fig. 3. Bold lines illustrate information specified by hidden variabfeandx?.

The EM parameter update equations, for the case V\M%(réul) are modelled by full-
covariance Gaussian densitigg.X, =), are as follows:

>, P(xF=110)

Tk
() = 3
v >, PGt =v]0) 3)
A P(yf =110
Py = 2 PO =110) "
> PO =v10)
d ity = S =Lt =t s, = 110) (5)
Y. pak =15, =il0)
M= 2 POi =15 = J110); (6)
T Y pOf =1st = j'0)
s _ X p0E =1t = [10)0f - et - ity @)
! S pGk =15 = jl|0)
whereO = 0Oy, ..., Or denotes the current utterance af)id= (sl, ..., sX) denotes the

metastate at time Summations overrun from 1 to7', except inEq. (5)which runs from 2 to
T; summations over run from 1 toK . 6 denotes an updated parameteSeeNock (2001)
for the derivation and procedure for calculating the necessary posterior probabilities.

2.3. Approximations for model estimation and decoding

Likelihood calculations and EM estimation require forward and backward probabilities in the
metastate space of siagX, which could become intractable &sor N increase. Phonological
or articulatory feature sets typically invol€ > 5; allowing asynchrony within words or
larger modelling units increases the requirédThus, more efficient, perhaps approximate,
decoding and estimation schemes may be required. Two alternative approaches are stiggeste

2.3.1. Chain Viterbi algorithm
In decoding it is typically assumed that the total likelihood of data is well approximated
by the likelihood calculated along one particular state sequence: the most likely state (or in
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this case, metastate) sequeS¢@iven the data, which is obtained using the Viterbi algorithm
(Viterbi, 1967) However, the Viterbi algorithm also operates in the metastate space of size
NX.Saul and Jordan (199p)opose a more efficiehain Viterbischeme for approximating

the metastate sequeng§ewhen thek time series arassumedaveakly coupled. Starting from
some initial metastate sequence, the algorithm iterates through eacl aintim, finding the
optimal sequence of hidden states through chaiiven fixed values for the hidden states of
the other chain&.The state space is thus reduced to $Vz&hen doing the optimisations for
chaink. Iteration through alK chains continues until convergence, which is not necessarily to
S* (seeNock, 2001for a counter-example). For a more formal presentationNeeé (2001)
Assuminghe resulting sequence is similar to the Viterbi seque§ideads to an approximate,
Viterbi-like estimation scheme: the associated parameter update equations are obtained by
conditioning posterior probabilities iBgs. (3)-(7)on S$* as well as observatiorg.

2.3.2. Mean-Field variational approximation

Variational methods exploit a lower bound on the data likelihood for approximating model
likelihoods and for model estimation. Such methods are currently popular in the graphi-
cal models community, where ML estimation using the EM algorithm is often intractable.
This section outlines the basic arguments behind variational approximations specifically for
the observation-only coupled MMFHMMJordan, Ghahramani, Jaakkola, & Saul, 199&)
more general presentation.

For the observation-only coupled MMFHMM with parametgrsvhich for an utterance of
lengthT has hiddenvariablds = Y,, ..., Yy andS = S4, ..., Sy, whereY, = (ytl, el y,’()

ands; = (stl, R stK), the variational lower bound is:
p(0, S, Y|))
L) =Inp(O|r) = In (0,S8,Y|M) = In (S, Y|o)————"=
p(O| ;p | SZY (S YI¥) =5 e
p(0,S8,Y|})
> OS, YIW)InT——"""" = L,(¥, 1) 8
;Y: oY) ©

whereL (1) denotes the likelihood functiom® (S, Y|¥) is a distribution over the hidden vari-
ables with parametets, andL, (¥, A) denotes the lower bound of interest. The inequality in
the third line follows by Jensen’s inequality. Note tifah) exceedsLy (¥, A) by exactly the
Kullback—Leibler (KL) divergence KL (S, Y|¥)||p(S, Y |0, 1)] between the distributions,
which is non-negative. This lower bound on likelihood may be tightened for each observa-
tion sequencd) by adjusting thevariational parameters? of the variational distribution

Q to minimise the KL divergence. The lower bound can also be used in estimation: iterative
coordinate ascent in the lower bound, first maximising with respect to the pararhetérs
model p and then with respect to parametdrsof variational distributionQ, is guaranteed

to increase the lower bounti, (¥, 1) on the likelihood at each step, although not necessarily
the likelihood£()). Convergence of this procedure can be assessed by monitoring changes in
the lower bound. Wher@(S, Y |¥) encompasses all distributions over the hidden variables,
this learning procedure is equivalent to the standard EM algorithemfster et al., 1977
Neal & Hinton, 1998.
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The variational lower bound is useful when likelihood calculations or EM estimation are
intractable. FamilyQ (S, Y|¥) is chosen to allow more tractable inference thhaRor example,
when working with graphical model® often makes additional independence assumptions
above those made by the famjly The variational approximatio@ used here is the simplest,
completely factorised approximation in which all hidden variables are assumed independen
given the observationsThis Mean-Fieldapproximation can be written:

T K
o, YIw) =[]{] ] o™i 1w 0Y ok 1w ©)
=1 k=1
where

o OKsk|wSK denotes a pmf with paramete¥s™ = {Llftjskklj" € O); @lftjskk denotes the

probability of outcomej*;

o Q%(y¥|w,Y% denotes a pmf with parametes’™ = {¥,/1 < I < K}; ¥,"* denotes the

probability of outcome thé-th mixture component.

To simplify maintenance of positivity, ensure appropriate normalisation and guarantee that
no hidden event has probability zero, a softmax form is assumed for variational pmfs:

. d
OKsk = jH L

andforeach k[ < K

def  EXpYK
QMO = 1UNE
Zv:lexplptu

Lower bound maximisation with respect to parametgrgan be implemented using basic
gradient descent, although solution via fixed point iteration may give faster convergence
(Attias, 2000) maximisation with respect to parameters similar to standard ML estimation

for multivariate Gaussian distributions. Sdeck (2001)for details.

Sk
expY:

Sk
itco, EXP¥gi

3. Preliminary evaluation using ISOLET

These preliminary experiments use the OGI ISOLET dataf2asie, Muthusamy, & Fanty,
1990) which comprises wideband recordings of isolated utterances of single letters of the
alphabet. Whilst far from the conversational speech motivating the research, ISOLET is ad-
equate for an initial feasibility study of novel models and algorithms without the additional
complications introduced by continuous speech tasks. Wésoset1-4(6240 utterances) to
train and the speaker-disjoilsblet5(1560 utterances) to test. Our baseline HMM performance
using a 39-dimensional observation vectofudf-band cepstra (including Oth) with delta and
acceleration coefficients is between®% (3 state HMM) and 96% (10 state HMM). The
experimental task investigated is that of modelling cepstra derived from frequency subband:
(e.g.,Mirghafori, 1999 Tomlinson, Russell, Moore, Buckland, & Fawley, 199%ther than a
more speculative articulatory or phonological representation. Some evidence of asynchrony be
tween different frequency bands exigtéirghafori, 1999) however, there is likely to be more
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asynchrony in articulatory or phonological representations, where the advantages of loosely
coupled models may be more evident.

3.1. Procedure for subband cepstra extraction

25ms windows of speech are Fourier-transformed and filtered through a bank of 20 over-
lapping, equally mel-spaced, filters giving a vector of log spectral enefjiede, . . ., exq].
A choice ofV frequency subbands subdivideédnto V subvectorsE,. A DCT D, is applied
to eachk, to yield a vector of cepstr&, = D,E, for subbandv. DecreasingD, row di-
mensionality effects cepstral truncation, reducing the dimensionality, dfom that of E,:
aV-tuple (#4, ..., #,) denotes the truncation scheme, wheréwlicates retention of cepstra
0,...,#,—linsubband. Finally, observations for the-th subband streana in our earlier
notation) are formed by appending the appropriate delta and acceleration coefficiénts to

Our experiments use cepstra from two and from three frequency subbands. Observations
for the two-stream experiments comprise cepstra from two subbands 0-2 and 2-8 kHz, with
cepstral truncation (7,6), yielding a 39-d combined observation ve2toObservations for
three-stream experiments comprise cepstra from three subbands 0-0.9, 0.8-2.7, 2.7-8kHz
with cepstral truncation (5,4,4), again yielding a 39-d combined observation v@gtor

3.2. Comparison: model structures

This subsection compares classification performance of loosely coupled models with more
conventional speech models. Classification uses an ML decision rule, i.e., uttedaisce
allocated to the clas¥® that maximisesp(O|W) (equivalent to the Bayes minimum error
decision rule for this task since class priors are equal in the ISOLET test set). Performance
is compared against two baselines. The first is a standard HMM-based system trained on
the combined observations. However, since HMM and MMFHMM-based classifiers are quite
different in their use of parameters, additional comparisons are made agaiksnultiple
streamandindependent streantaodels. These “conventional” models are configured to be
comparable with the loosely coupled models not only in terms of the total number of parameters
(as for the HMM baseline) but also in their usage of parameters. These three types of model
differ in the degree of asynchrony allowed between streams. To reflect this, results are ordered
in terms of increasing potential asynchrony: the synchromtlis multiple streanmodel is
followed by the loosely coupled models and then the completely asynchramtegendent
streamsamodel. Note that none of the HTK multiple stream, loosely coupled or independent
streams results utilise any form of stream-weighting.

3.2.1. Experimental setup

Speech HMMs are typically constrainagriori to have a left-to-right transition structure.
Fig. 4b) shows a metastate space topology in which the left-to-right property is enforced
for each stream separately: metasi@tg) can transition only to metastatesfini + 1} x
{j, j+1}. Unfortunately this intuitive arrangement is not possible in MMFHMMSs with coupled
transitions {/ = I in approximatiorn(1); seeFig. 2d and f), since then with some probability a
stream’s next state is independent of its current state (depending instedifereatstream’s
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Fig. 4. (a) Left-to-right metastate space topology with no transition coupling; (b) connedigaibwedwhen
transition coupling is constrained by “left-to-right” (upper bidiagonal) cross-transition matrices.

current state). In this case we do the next best thing, requiringvthe N cross-transition
matricesz¥' to have the same upper-bidiagonal form that characterises left-to-rightness in the
within-stream transition matrices®. This allows metastaté, j) to transition to metastates
in{i,i+1,7,j+1 x{i,i +1,j,j+ 1}, e.g., metastate (3,1) can transition to (23y. 4

(b) illustrates that, although the left-to-right constraint is then not fully enforced within each
stream, many backwards transitions have nonetheless been prevented.

Gaussian emission densities are full covariance, initialised using the global mean and co
variance of the training set. Models using cross-emission or cross-transition dependencie
are constructed incrementally: first, an HMM is trained for each stream independently; then,
cross-stream dependencies are introduced gradually, with two training iterations between th
addition of one cross-dependency per stream and/or per chain. Training termination uses a
absolute threshold on the gain in likelihood.

3.2.2. Experimental results

Table 1gives baseline percentage correct(¥fperformance of standatdMMs for mod-
elling combined observation vectors formed by pairing the two subband cepstra streams a
each time step.

Table 1

HMM baseline (two subbands)

Model (# states) # Parameters %
HMM (3) 4686 96.3
HMM (6) 9327 96.1
HMM (8) 12496 96.4

HMM (10) 15620 96.7
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Table 2

Results: transition-only coupled models (two streams)

Model (# states per chain) # Parameters C%
HTK multiple stream (3) 2418 94.2
MMFHMM, transition probability metastate dependence (3) 2440 94.1
Independent streams (3) 2424 93.9
HTK multiple stream (6) 4836 94.9
MMFHMM, transition probability metastate dependence (6) 4876 95.0
Independent streams (6) 4848 94.8
HTK multiple stream (8) 6448 95.4
MMFHMM, transition probability metastate dependence (8) 6500 95.3
Independent streams (8) 6464 95.8

Table 2gives performance of MMFHMMs with coupling through transition probabilities
only, i.e., transition probabilities depend upon metastates, again for two observation streams.
The MMFHMM and more conventional models in each block of the table are ordered us-
ing allowable asynchrony between streams: the synchrohidué multiple streammodel
precedes the MMFHMM with metastate-dependent transition probabilities, which precedes
the asynchronoumdependent streantaodel. Table 3analyses significance of performance
differences for models with comparable numbers of parameters using the McNemar test
(Gillick & Cox, 1989).

Table 4gives performance of MMFHMMs with coupling through observation probabilities
only, where observation probabilities depend upon metastates, and then for systems coupled
through both observation and transition probabilities, again for two observation streams. Re-
sults are again ordered by allowable asynchrony. Each stet€Knmultiple streanandinde-
pendent streamsodels uses a two-Gaussian mixture to model the data from a single stream.
The number of observation-related parameters in these systems is thus, comparable with the
MMFHMMs with metastate-dependent observation probabilities, which use a single Gaussian
for eachb¥! (0¥ i) distribution.Table 5is analogous tdable 3

The overall results suggest that in most cases the performance of the various models does
not differ significantly on the task of frequency subband modelling. Similar trends were seen
when repeating experiments with three cepstral subbands.

Table 3

Significance of differences among two-stream, transition-only coupled madets)(01y

# States per HTK multiple Independent stream (# HMM (three-state) HMM (six-state)
chain stream (# states) states per chain)

3 NO (3) NO (3) p=12x10"* p=15x10"3

6 NO (6) NO (6) NO NO

8 NO (8) NO (8) NO NO

aEach row compares an MMFHMM model froifable 2with four other models fronTables 1 and 2The
p-values are specified where results differ significantly.
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Table 4

Results: observation-only and fully coupled models (two streams)

Model (# states per chain) # Parameters C%
HTK multiple stream (3) 4842 94.6
MMFHMM, output + transition probability metastate dependence (3) 4856 94.7
MMFHMM, output probability metastate dependence (3) 4840 94.9
Independent streams (3) 4848 94.0
HTK multiple stream (6) 9684 96.2
MMFHMM, output + transition probability metastate dependence (6) 9704 95.8
MMFHMM, output probability metastate dependence (6) 9676 96.7
Independent streams (6) 9696 95.3
HTK multiple stream (8) 12912 96.2
MMFHMM, output + transition probability metastate dependence (8) 12936 96.2
MMFHMM, output probability metastate dependence (8) 12900 96.0
Independent streams (8) 12928 96.3
Table 5

Significance of differences among two-stream, fully coupled modeis 0.01)

Model # states  HTK multiple Independent stream  Observation-only coupled HMM (# states)
per chain stream (# states)  (# states per chain) MMFHMM (# states per chain)

3 NO (3) NO (3) NO (3) p=0.03(3)

6 NO (6) NO (6) NO (6) NO (6)

8 NO (8) NO (8) NO (8) NO (8)

Further analysis examined whether the potential asynchrony between state chains is utilise
A Viterbi decoding of each training utterance underdbgectobservation-only coupled model
gives the optimal metastate sequence for that utterance; the resulting metastate sequences w
examined to determine the percentage of “asynchronous” metastates used (i.e., for a two-strea
system, metastatés j) wherei # j; for a three-stream system, metastdieg, k) where it
is not the case that= j = k). Table 6shows that asynchronous metastates are indeed used.

3.3. Comparison: exact and approximate decoding algorithms

This subsection considers the quality of likelihood approximations given by exact and ap-
proximate decoding algorithms.

Table 6

Percentage of “asynchronous” metastates in training set Viterbi metastate sequences

# States per chain Two-stream observation-only Three-stream observation-only
coupled models (%) coupled models (%)

3 19 34

6 35 51

8 38 58
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3.3.1. Experimental setup
Exact and approximate algorithms are used to decode a fixed set of observation-only coupled
models originally trained using the EM algorithm.

3.3.1.1. Chain Viterbi initialisationTwo procedures were investigated. The first used a uni-
form segmentation of streaf observations against states in chajnthe second used the
segmentation obtained by doing a Viterbi decoding of stréashservations using the chain

k parameters only (for eadt). Preliminary experiments found the algorithm insensitive to
initialisation; results below use the per-chain Viterbi initialisation.

3.3.1.2. Mean-Field initialisation and step-sizdsvo initialisations on,Sk(j) distributions

were investigated. Initial per-stream state sequences were obtained using the uniform or the
per-chain Viterbi decoding schemes as in the previous paragraph€§gh) distribution was
theninitialised with a soft version of this segmentation, assigning mass the state occupied

in the Viterbi or uniform segmentation, and distributing mass equally amongst the remaining
statesQ(!) distributions were initialised uniformly. Preliminary experiments found per-chain
Viterbi initialisation gave considerably better results and it is used below. The naive gradient
descent implementation also requires a stepsize: a brute force search over a range of value:
was used and the results below correspond to the stepsize yielding the highest value for the
lower bound on test set likelihoodd@tthe stepsize giving the bedassification performancge

since this would constitute cheating).

3.3.2. Experimental results

Fig. 5shows total test set likelihood and the Viterbi approximation for each class A through
Z as calculated for models of three subband cepstral streams with eight states per chain;
these should be compared with the values obtained from the Chain Viterbi approximation and
from the Mean-Field variational lower bound. Similar trends were seen when algorithms were
compared using models with different numbers of states and models of two subband cepstral
streamsTable 7shows classification performance when using the approximations with a ML
decision rule.

Only the Mean-Field approximations were shown significantly worse than the exact algo-
rithm (again using the McNemar teat= 0.01). The graph illustrates why: the Chain Viterbi
likelihood approximation is much closer to the exact likelihoods than the Mean-Field varia-
tional lower bound. The Chain Viterbi procedure typically converges within 3—4 iterations and
has proven more efficient than the gradient descent-based implementation of the Mean-Field
approach. It is our algorithm of choice for future work.

Table 7
Three-stream results: decoding schemes

States per stream Full likelihood@6 Viterbi %C Chain Viterbi %C Mean-Field %€

3 94.9 95.0 96.2 91%p = 0)
6 96.4 96.3 95.0 952p = 9.4 x 10°3)
8 96.4 96.3 96.2 95:p = 7.6 x 10°3)

aSignificantly different from full likelihood atr = 0.01.
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Fig. 5. Approximations to test-set likelihoods, three streams, eight-state madelsig corresponds to classes
A-2).

3.4. Comparison: exact and approximate estimation algorithms

This subsection compares classification performance of observation-only coupled MMFH-
MMs trained and tested usimgatchedexact or approximate algorithms, i.e., EM training with
full likelihood (FL) classification, Chain Viterbi training with a Chain Viterbi approximation in
classification and so on. Viterbi Training results are also presented for completeness, althoug
the algorithmic cost is of the same order as the forward—backward algorithm. Note that the
variational approximation is used to estimate only observation-related paraméterand
bM(0¥)i"), but not the transition parameters; it is viewed by the authors as a computationally
cheap means of integratirig independent per-stream HMMs.

3.4.1. Experimental setup
Training algorithms stop one iteration after the relative gain in likelihood or variational
lower bound falls below 1%.

3.4.1.1. Chain Viterbi initialisationAn initial metastate sequence was obtained by doing a
Viterbi decoding of streark observations using the chairparameters only, since this proved
a useful initialisation in the earlier decoding-only experiments.
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Table 8

Two-stream results: matched training/decoding schemes

States per stream Full likelihood®@6 Viterbi %C Chain Viterbi %C Mean-Field %€
3 94.9 94.9 942(p =19 x 1079 93.9

6 95.3 954 95.2 95.0

8 96.0 95.8 95.9 96.0

aSignificantly different from full likelihood atx = 0.01.

3.4.1.2. Mean-Field initialisation and step-sizé&stial per-stream state sequences were ob-
tained using theer-chain Viterbi decodingchemes as in Chain Viterbi initialisation; each
03K j*) distribution was then initialised with a soft version of this segmentation, assigning
mass (B to the state occupied in the Viterbi or uniform segmentation, and distributing mass
equally amongst the remaining stat@y(/) distributions were initialised to the uniform dis-
tribution. The gradient descent stepsize used in training and decoding was fixed to the value
that was most effective in the decoding-only experiments.

3.4.2. Experimental results

Table 8shows that classification performance using approximate algorithms is similar to
the exact scheme for the two-stream case. No significant differences between the exact and
approximate algorithms were found in the three-stream case. On average, the EM, Viterbi
and Chain Viterbi algorithms all take a similar number of iterations to fall below the relative
change training termination threshold; the Mean-Field scheme takes fewer. Despite this, our
currentimplementation of the Chain Viterbi scheme has proven more efficient than the gradient
descent-based Mean-Field approximation and is again our algorithm of choice for future work.

4. Conclusions and future work

Speech is produced by a system of loosely coupled articulators. Stochastic models explic-
itly representing this parallelism may have advantages for ASR, particularly for modelling
phonological effects in conversational speech. This paper has considered one possible model
family, loosely coupled HMMst has shown empirically that loosely coupled models can per-
form as well as similar conventional models on a frequency subband speech modelling task
and has identified an approximate estimation scheme making more extensive experimentation
tractable.

The results show that loosely coupled models merit further investigation. However, ISOLET
is anisolated word classification task involving limited variability. Applying these techniques to
conversational ASR poses further research questions. First, the acoustic preprocessor shoulc
extract observation streams corresponding not to different frequency subbands (used here
for convenience while investigating practical issues), but rather to articulator traces or other
phonologically motivated feature streanksdnkel et al., 200Kirchhoff, 1999. Second, the
inability to use a left-to-right metastate space topoldggdtion 3.2.1is a potential problem
for larger vocabulary tasklock (2001)proposes one possible solution. Finally, the approach
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must be extended to large-vocabulary continuous speech recognition without training a separai
model of each utterance. In one possible scheme, a pronunciation dictionary is used to ma
a word sequence int& strings of beads (each bead being an HMM model of some feature
value), one string for each of th€ phonological tiers of interest. A full acoustic model is
formed by loosely coupling thedé featural streams, allowing asynchrony between them as in
WARMTHin the introduction. However, whilst the transition coupling parameters should act to
constrain the amount of asynchrony between streams, allowing this much feature asynchron
is still only likely to work over short units such as syllables. A successful solution to this
particular problem will require both theoretical and engineering ingenuity.

Notes

1. Skip transitions are rarely used in state-of-the-art systems, having been found to degrad
performance.

2. Similar arguments might motivate loosely coupled models as a relation of the more
standard multiband models used for noise robustness &rghafori, 1999.

3. Directed Acyclic Graphical Model6€DAGM) or Bayesian NetworkéBN) are graph-
ical statements of conditional independence relations amongst random variables (se
Jensen, 199&weig, 1998.

4. Note also exact likelihood calculations can made more efficient for observation-only
coupled MMFHMM s (e.g.Ghahramani & Jordan, 1997

5. Softer versions of this iterative scheme are possible, fixing subsets of chains and opti-

mising over the remainder.

. Inference in the general case is NP-h@@doper, 199Q)

7. Although, as observed by Hagai Attias and an anonymous reviewer, the Chain Viterbi
procedure for likelihood approximation can also be viewed as a variational approxima-
tion in which Q puts all probability mass on a single metastate sequence.

[o2]
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