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Abstract

PROBEX (PROBabilities from EXemplars), a model of probabilistic inference and probability judg-
ment based on generic knowledge is presented. Its properties are that: (a) it provides an exemplar model
satisfying bounded rationality; (b) it is a “lazy” algorithm that presumes no pre-computed abstractions;
(c) it implements a hybrid-representation,similarity-graded probability. We investigate theecological
rationality of PROBEX and find that it compares favorably with Take-The-Best and multiple regres-
sion (Gigerenzer, Todd, & the ABC Research Group, 1999). PROBEX is fitted to the point estimates,
decisions, and probability assessments by human participants. The best fit is obtained for a version that
weights frequency heavily and retrieves only two exemplars. It is proposed that PROBEX implements
speed and frugality in a psychologically plausible way.
© 2002 Peter Juslin. Published by Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

A common way to address probability judgment inCognitive Scienceis by asking people to
make confidence or subjective probability judgments in regard to general knowledge beliefs.
For example, to assess the probability that one city has a larger population than another (e.g.,
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Gigerenzer, Hoffrage, & Kleinbölting, 1991; Juslin, 1994), or that a briefly described person
belongs to an occupational category (Kahneman, Slovic, & Tversky, 1982). These tasks require
on-the-spot elaboration of generic knowledge originally acquired for other purposes, in other
contexts, by means ofprobabilistic inferenceto produce asubjective probability. Yet, few
models address the issue of how subjective probabilities (or “degrees of belief” in the words
of Ramsey, 1931) are computed from generic knowledge.

In the 1960s, research emphasized that probability judgments are fairly accurate projections
of extensionalproperties of the environment (e.g., frequencies) and thus accord approximately
with normative models (Peterson & Beach, 1967). In the 1970s, it was stressed that probability
judgments were (mis)guided byintensionalaspects, like similarity, and therefore prone to
cognitive bias (Kahneman et al., 1982).

In this article, we propose thatexemplar models(e.g.,Medin & Schaffer, 1978; Nosofsky,
1984; Kruschke, 1992) provide a fertile approach to probabilistic inference, and that they afford
a principled understanding of the role of frequency and similarity in human judgment. A main
objection to exemplar models is that they make unreasonable demands on storage and retrieval
capacity (Barsalou, Huttenlocher, & Lamberts, 1998; Nosofsky, Palmeri, & McKinley, 1994).
As emphasized byGigerenzer et al. (1999), cognitive algorithms need to make psychologically
plausible demands on time, knowledge and computation: they need to implementbounded
rationality (Simon, 1990).

With this background in mind, we investigate the cognitive processes that compute
subjective probabilities from generic knowledge, a topic addressed in terms of three
interrelated issues.First, we present the originalcontext modelof perceptual classi-
fication (Medin & Schaffer, 1978) and illustrate why it is a useful tool for investigating
the role of similarity and frequency in judgment. The context model specifies conditions
that emphasize similarity or frequency, respectively, and implements a hybrid-representation,
similarity-graded probability, that strikes a useful compromise between relevance and suffi-
cient sample size. This allows for efficient exploitation of limited knowledge of an
environment.

Second, we present a modification of the context model,PROBEX(PROBabilities from
EXemplars) that applies to inference from generic knowledge. In addition to the refinements
required for this new application (e.g., to generate probability judgments), the modifications aim
to produce an exemplar model that satisfies bounded rationality. We investigate the ecological
rationality of PROBEX by comparing it to linear multiple regression and two fast-and-frugal
algorithms (Gigerenzer et al., 1999). We emphasize that, in contrast to its competitors, PROBEX
relies on no pre-computed abstractions and thus belongs to a class oflazy algorithmsintroduced
in the artificial intelligence literature (Aha, 1997).

The final section examines the fit of PROBEX to the point estimates, decisions, probability
judgments, and response times by human participants performing a paradigmatic example of a
generic knowledge task. We demonstrate that the best-fitting version of PROBEX implements
a fast-and-frugal exemplar model that makes inferences by the speeded retrieval of a few highly
similar exemplars. We conclude that a fast, frugal, and lazy exemplar algorithm like PROBEX
provides a more plausible account of the probabilistic inferences that people make in generic
knowledge tasks than previous accounts in terms of cue-based inference (e.g.,Gigerenzer et al.,
1991; Juslin, 1994).
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2. Similarity-graded probability

In the last 15 years, one trend inCognitive Sciencehas been a move from abstractions (i.e.,
rules, schemes, prototypes) to concrete experiences. Theories that stress the storage of concrete
instances (traces, exemplars) have appeared in research on memory (Hintzman, 1984, 1988),
perceptual categorization (Estes, 1994; Lamberts, 2000; Medin & Schaffer, 1978; Nosofsky,
1984, 1986; Nosofsky & Palmeri, 1997; Kruschke, 1992), expertise (Reisbeck & Schank, 1989),
automatisation (Logan, 1988), judgment (Kahneman & Miller, 1986), decision making (Klein,
1989), social cognition (Smith & Zarate, 1992), and function learning (DeLosh, Busemeyer,
& McDaniel, 1997), and other areas.

The perhaps most successful of these models is thecontext modelof perceptual classifica-
tion (Medin & Schaffer, 1978), later developed into thegeneralized context model(GCM) for
continuous dimensions (Nosofsky, 1984, 1986). GCM has been amended with sequential sam-
pling mechanisms in the decision process (Nosofsky & Palmeri, 1997) and the build-up of the
stimulus representation (Lamberts, 2000). ALCOVE(Kruschke, 1992), which conjoined GCM
with the architecture of a neural network, was combined withgeneralized recognition theory
(Ashby & Townsend, 1986) to arrive at a model embodying both rules and exemplars (Erickson
& Kruschke, 1998). It seems fair to conclude that the context model has been successful, both
in accounting for data and in stimulating novel theorizing.

The development presented in this article—PROBEX—is framed in terms of the original
context model for binary features (Medin & Schaffer, 1978).1 In order to apply it to probabilistic
inference from generic knowledge, it is amended in the following respects. (a) Features of a
presented probe are retrieved from memory rather than extracted from a visual input. (b)
Retrieval of exemplars is sequential and terminated by a stopping rule. This avoids exhaustive
retrieval of exemplars, but also allows prediction of response times (Nosofsky & Palmeri, 1997).
(c) Response rules for point estimates and subjective probability assessments are added. (See
Andersson & Fincham, 1996; DeLosh et al., 1997; Dougherty, Gettys, & Ogden, 1999; Smith
& Zarate, 1992, for similar proposals in other applications.) We defer a detailed discussion of
the relationship between PROBEX and other models toSection 6.

Before we present PROBEX, we highlight the properties that make the context model
particularly useful for addressing the issue of whether subjective probabilities derive from
representations of environmental frequencies (e.g.,Gigerenzer et al., 1991; Juslin, 1994) or
similarity relations (Tversky & Kahneman, 1983).

2.1. The original context model

Consider a participant who has storedNA exemplarsāi (i = 1, . . . , NA) from Category
A and NB exemplarsb̄i (i = 1, . . . , NB) from Category B. (The bars overa andb denote
that they are vectors.) Each exemplar is represented by a vector ofD binary feature values
x̄i = [xi1, xi2, ..., xiD ], where feature value 1 denotes presence of the feature and 0 denotes
absence of the feature.Table 1illustrates six exemplars with four features (i.e.,NA +NB = 6;
D = 4) where, for example, exemplar 1 [1, 1, 1, 1] has all four features. The participant is
presented with a novel probet̄ and is required to categorize it. The similarityS(t̄, āi) between
probet̄ and exemplar̄ai and the similarityS(t̄, b̄i)between probēt and exemplar̄bi is computed
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Table 1
Six exemplars with four features each, distributed into two categories, Larry and Barry

Exemplar Feature Category Similarity to Mr. X

1 2 3 4

1 1 1 1 1 Larry 1
2 1 1 1 1 Larry 1
3 1 1 1 1 Barry 1
4 1 1 1 0 Barry s
5 1 1 0 0 Barry s2

6 1 0 0 0 Barry s3

The predicted probability assessmentP(Larry) that a new probe Mr. X [1, 1, 1, 1] is namedLarry is computed
for three values of the similarity parameters.

1. Picky probability that Mr. X [1, 1, 1, 1] belongs to CategoryLarry (s = 0):

P(Larry) = 2 × 14

2 × 14 + (14 + 0 + 0 + 0)
= 2

3
.

2. Sloppy probability that Mr. X [1, 1, 1, 1] belongs to CategoryLarry (s = 1):

P(Larry) = 2 × 14

2 × 14 + 4 × 14
= 1

3
.

3. Similarity-graded probability that Mr. X [1, 1, 1, 1] belongs to CategoryLarry (s = .5):

P(Larry) = 2 × 14

2 × 14 + (14 + .5 + .52 + .53)
= 2

3.875
= .52.

by the multiplicative similarity rule of the context model,

S(t̄, ȳ) =
D∏

j=1

dj , dj =
{

1, if tj = yj ,

s, if tj �= yj ,
(1)

whereȳ could be any exemplar in Category A or B,dj is 1 if the values on featurej match
ands if they mismatch,s is a parameter in the interval [0, 1] for the impact of mismatching
features. Although the context model allows for separate similarity parameters for each feature
dimension, in this article we will settle with a single value ofs.

FromEq. (1)we get a similarity to each exemplar. This similarity determines its activation
in memory and thus its impact on the classification. The original context model implies that
the probabilityP(A) of a classification of probēt in Category A is computed by summation of
the activation across Categories A and B.

P(A) =
∑NA

i=1S(t̄, āi)∑NA
i=1S(t̄, āi) + ∑NB

i=1S(t̄, b̄i)
. (2)

One interesting property of exemplar models is that they respond to both frequency and
similarity. GCM thus account for the effects of similarity and frequency on theclassification
probabilitiesin perceptual categorization tasks (Nosofsky, 1988). For the moment, we suppress
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the distinction between classification probability and probability judgment and emphasize
two special cases ofEq. (2). Later, we make this distinction explicit and present separate
response-rules for classification decisions and probability judgments.

2.1.1. Environment parameters
First, if the similarities between probet̄ and all exemplars in Categories A and B is constant,

Eq. (2) simplifies to a pure response to frequency (i.e., similarity is a constant that can be
factored out to cancel in the nominator and denominator):

P(A) = NA

NA + NB
. (3)

Eq. (3)corresponds to the relative frequency estimates modeled by thecombined error model
(Juslin, Olsson, & Björkman, 1997; Juslin, Wennerholm, & Olsson, 1999). Eq. (3)represents
the extensional feature of relative frequency and the output tends naturally to conform to the
probability calculus.Eq. (3)holds in an environment with homogenous objects as, for example,
when a participant observes the turn-over of cards from a deck only containing red and blue
cards.Eq. (3)might suggest that “normative models provide a good first approximation” to
behavior (Peterson & Beach, 1967, p. 42).

If, on the other hand, the numberN of exemplars in Categories A and B, respectively, are
the same (N = NA = NB), Eq. (2)simplifies to a pure response to similarity (i.e., because∑N

i=1S(t̄, x̄i) = NmSx
, N can be factored out to cancel in nominator and denominator)

P(A) = mSA

mSA + mSB

, (4)

wheremSA andmSB are the mean similarities between the probet̄ and the exemplars in Cat-
egories A and B, respectively. In an environment with objects that vary in similarity,Eq. (4)
has some resemblance to therepresentativeness heuristic(e.g., Kahneman et al., 1982;
Tversky & Kahneman, 1983), the alleged cause of a number of cognitive biases. For ex-
ample, the judgments fromEq. (4)will not respond to the reliability of the information, and
thus not be sufficiently regressive (Kahneman et al., 1982). However, in contrast to the repre-
sentativeness heuristic,Eq. (4)does not produce the conjunction fallacy or base-rate neglect
unless conjoined with auxiliary assumptions. We return to these issues inSection 6when we
discuss MINERVA-DM (Dougherty et al., 1999).

The algorithm is the same in bothEqs. (3) and (4)—which are merely special cases of
Eq. (2)—and the parameters may be the same in both cases. Because of the differences in
the learning environment, observable behavior is nevertheless predicted to “change” into a
response solely to frequency or solely to similarity. In most environments, behavior is affected
by both frequency and similarity as governed by the similarity parameters.

2.1.2. Organism parameter
Table 1provides the example of a person with six friends, all of which happen to be named

eitherLarry or Barry. Each friend is described by four features. With the context model, this
is modeled by six exemplars, two from the category Larry and four from the category Barry,
where exemplars called Larry are homogenous with regard to the four features. Obviously,
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the similarity and the frequencies of the exemplars inTable 1differ, so behavior is potentially
sensitive to both similarity and frequency. The person next encounters Mr.t̄ modeled by the
vector [1, 1, 1, 1]. The person is asked to assess the subjective probabilityP(Larry) that the
name of Mr.t̄ is Larry, assuming that Larry and Barry is the only possible choice. How is this
assessment affected by the value of the parameters?

First, consider the possibility thats is 0. We then have the case of a “picky frequentist,” who
only activates exemplars that are identical to the probe. Therefore, the assessed probability
Ppicky(Larry) will equal 2/3, the relative frequency ofLarry-exemplars within the reference
class of exemplars identical to Mr.t̄ (computational example 1 inTable 1). Next, consider if
s equals 1. In this case we end up with a “sloppy frequentist,” to whom all exemplars seem
equally similar to Mr.t̄ (computational example 2). The sloppy frequentist will thus respond
with the overall base-rate of Larry-exemplars, 1/3. For all values ofs between 0 and 1, the
person will respond with asimilarity-graded probability, where the exemplars are weighted
by their similarity (computational example 3).

A hypothesis motivating the research with PROBEX is that similarity-graded probabi-
lity solves an adaptive problem. Consider the classical problem of the single case in probability
theory (e.g.,Salmon, 1979). For example, assume that you want to estimate the probability
that a person X has a heart attack before the age of 40. A routine procedure is to compute the
proportion of heart attacks before the age of 40 within a reference class of persons matched to X
on a number of relevant features (e.g., age, blood pressure). However, depending on the choice
of features (i.e., the reference class) you arrive at different estimates. To get a good estimate,
you prefer to enter as many relevant features as possible, but with all relevant features, the
reference class may turn out to have a single member (X!).

An organism in an environment where the objects and situations are described by a large
number of features is faced with an analogous problem. One possibility is to estimate the
probabilities by computing a relative frequency as conditioned on a single feature (cue), as
presumed by models ofcue-based inference(e.g.,Gigerenzer et al., 1991; Juslin, 1994). For
example, inTable 1the relative frequency of the name Larry conditional in presence of Cue 4 is
2/3 (i.e., the equivalent of a cue validity inGigerenzer et al., 1991; Juslin, 1994). This, however,
ignores the information provided by the unattended features. This is especially problematic
in states of limited knowledge where it remains uncertain what the best cues are. A second
possibility is to attend to all features and retrieve identical exemplars as implied by the Picky
frequentist. This defines a reference class of high relevance, but the sample size is bound to be
small or zero, again, especially in states of limited knowledge.

Similarity-graded probability provides a compromise between the demands for relevance
and sufficient sample size: all exemplars are considered but similar exemplars receive a larger
weight in the estimate (the weight is determined by the similarity parameters). For example,
assume that you are asked to assess your confidence that Indonesia has more than 70 million
inhabitants. Perhaps, you only know the population of a small set of countries. The idea is that
your judgment is informed by the distribution of values within this known set, but countries
similar to Indonesia receive a larger weight in your judgment (seeNosofsky, 1998, for a more
general discussion of exemplar models and optimal estimation).

In the next section, we verify that similarity-graded judgment is superior to both cue-based
inference and a picky frequentist version of PROBEX for making probabilistic inferences, in
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particular, in states of limited knowledge. Next, we present a modification of the context model,
but the virtues detailed in this section are nonetheless preserved.

3. PROBEX—the algorithm

With PROBEX, the value of a continuous quantity or a subjective probability is estimated by
rapid, sequential retrieval of exemplars from long-term memory. The activation of exemplars
in memory is a parallel process, but the judgments arise from sequential processing of the
retrieved exemplars. The search for exemplars is terminated once a clear-enough conception of
the estimated quantity has been attained. For example, suppose that you are asked to estimate the
population of Singapore. The probe Singapore activates similar cities in memory for which the
population is somehow known (e.g., Djakarta, Shanghai, etc.), where the similarity parameter
s determines the discriminability of the activation.

We now make the following terminological conventions explicit. We refer to entities in the
environment asobjects(e.g., the city of Djakarta), the memory representations of these objects
asexemplars, and the object-name presented in a judgment task as aprobe. The property to be
estimated by PROBEX is referred to as thecriterion. The criterion may either be a continuous
quantity (e.g., population) or a binary index that signifies an event category (e.g., index 1 if
the city population exceeds 4 millions and 0 otherwise). The probabilistic inference made by
PROBEX may be elicited as apoint estimatefor a continuous variable, adecisionbetween
event categories, or asubjective probability judgment.

3.1. Environment and knowledge state

PROBEX exploits the structure of an environment as represented in the exemplars. The
environment is modeled by a matrix, withD feature-dimensions andO objects. In our ap-
plications of PROBEX, we rely on values forD andO that are seta priori by the task. The
environment matrixis projected into aknowledge-state matrixby filtering it with a retrieval
probability pr, the probability that a feature in the environment matrix is available from the
knowledge-state matrix. The knowledge-state matrix hasD feature-dimensions andK exem-
plars (K ≤ O). With pr = 1, all feature values are available from the knowledge-state matrix
and PROBEX has perfect knowledge; withpr = .5, half of the feature values are available
from the knowledge-state matrix, and so on. The cells of the knowledge-state matrix not filled
with “1” (“present”) or “0” (“absent”), are filled with “?” denoting an unknown value. A
feature value is unknown either because it has never been encoded or because it has been
forgotten.

Note that in this application of PROBEX to generic knowledge, exemplars do not cor-
respond to memory traces of each single presentation with a stimulus, but to declarative
knowledge-structures corresponding to objects in the environment (e.g., to Singapore). These
crystallized knowledge structures retrieved from semantic memory may themselves have been
formed by processes that involve abstraction across stimulus presentations. This interpretation
departs from the interpretation in some previous exemplar or instance-based models (Logan,
1988; Nosofsky & Palmeri, 1997). Exemplars are coded in terms of binary features, except for
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one continuous dimension (population) required by the task used to compare the ecological
rationality of PROBEX with the other algorithms (Gigerenzer & Goldstein, 1996).

3.2. Activation in memory

When PROBEX is presented with a probe (an object-name) and the corresponding exemplar
exists in memory, this exemplar is activated. If no exemplar that corresponds to the probe exists,
a default vector for unknown probes is generated that only contains “?.” In both cases, the
(other) exemplars are activated as a function of their similarity to the probe and used to infer
the criterion of the probe. Similarity is computed by the multiplicative similarity rule (Eq. (1)
above), with one modification. If one feature value is unknown and the other known for feature
dimensionj, the feature indexdj is

√
s, interpreted as a half mismatch. If both feature values

are unknown, the feature indexdj is 1, implying that they are similar in the sense of both
being unknown. When knowledge of an object is positively correlated with its criterion (e.g.,
when we know more about cities with large population), the unknown–unknown similarities
drive therecognition principle(Gigerenzer & Goldstein, 1996). For example, encountering an
unknown city, it will be similar to other vaguely known cities, and if you happen to know the
population of one such city it is likely to be small.2

Exemplars race to be retrieved (Logan, 1988; Nosofsky & Palmeri, 1997). The race is
repeated, but the winners of a race do not participate in subsequent races. A stopping-rule
decides when the sampling is terminated and a judgment is made. Exemplarsx̄1, x̄2, . . . , x̄N
are thus retrieved one-by-one from an initial setK1 without replacement,(i < n) ⇒ x̄i /∈ Kn.
The probability that any exemplarȳ is sampled at iterationn is

pn(x̄n = ȳ) = S(t̄, ȳ)∑
∀z̄,z̄∈Kn

S(t̄, z̄)
, ∀ȳ (ȳ ∈ Kn). (5)

The rationale is that it makes little sense to retrieve, for example, the population of Shang-
hai repeatedly, when you try to estimate the population of Singapore. The summation in the
denominator is thus performed across the exemplars not yet sampled. A response is generated
at iterationN, where the stopping rule specified below terminates the sampling.N is a random
variable, the distribution of which predicts empirical response times. Note also thatall algo-
rithms rely on retrieval and thus need some equivalent toEq. (5), regardless of whether it is
cues (Gigerenzer & Goldstein, 1996) or exemplars that are retrieved.

3.3. Judgment process

3.3.1. Point estimation
To estimate the criterionc(t̄) of probe t̄ , the criteriac(x̄i) of retrieved exemplars̄xi are

considered. The estimate of the criterionc′(t̄ , n) at iterationn is,

c′(t̄ , n) =
∑n

i=1S(t̄, x̄i)c(x̄i)∑n
i=1S(t̄, x̄i)

, (6)

a weighted average of the retrieved criterion values, where the similarities of the exemplars
are the weights. The final estimate isc′(t̄) = c′(t̄ , N), whereN is the first iteration where the
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conditions for the stopping rule are satisfied. The final estimatec′(t̄) is a best guess about the
criterion value of probēt (e.g., the population of Singapore).Eq. (6) is merely a continuous
version ofEq. (2) for the context model. Thus, if we define the criterion value as 1 if an
exemplar belongs to Category A and 0 otherwise,Eq. (6) is equivalent toEq. (2) (i.e., the
sequential sampling aside). Similar extensions have been applied to perceptual classification
by Andersson and Fincham (1996), function learning byDeLosh et al. (1997), and social
prediction bySmith and Zarate (1992), but without sequential sampling.

3.3.2. Decisions
The original context model over-predicts the probabilistic responding in data, in particular,

in individual-participant data (e.g.,Maddox & Ashby, 1993; McKinley & Nosofsky, 1995).
Eq. (2) implies that the classification probabilities should match the ratio of the summed
similarities (akin to so-called “probability matching”), but participants tend deterministically
to prefer the category favored by the ratio (maximizing). That is, ifEq. (2)exceeds .5 almost all
the participants’ decisions favor Category A, if it is below .5 almost all decisions favor Category
B. One way to modifyEq. (2)is by raising the summed similarities to a powerθ , whereθ is
a free parameter determined by data (Maddox & Ashby, 1993; McKinley & Nosofsky, 1995).
A problem with this formalization is that, although it improves the quantitative fit to data, the
psychological rationale for it remains obscure.

PROBEX provides a more direct solution to this problem: exemplar retrieval is probabilistic
but the decision rule is deterministic (seeNosofsky & Palmeri, 1997, for a similar approach).
With PROBEX, Categories A or B may be predefined by a feature value present in the input
vectors of the exemplars, as in standard classification experiments. Alternatively, the category
is definedpost hocby the task instructions provided at retrieval. For example, in the application
to data below, two Categories A and B are defined by reference to a cut-offd on the continuous
criterion stated in the task. PROBEX assigns exemplarx̄i to Category A if its criterionc(x̄i)
exceedsd and to Category B otherwise. Specifically, the population of a city is stored in the
exemplar. The task instructions require a judgment of the probability of the “post hocevent”
that a city has more than 180,000 inhabitants. In this case, thepredicted proportionP(t̄ ∈ A)

of decisionsthat probēt is in Category A:

P(t̄ ∈ A) = p(c′(t̄) > d). (7)

Prosaically, if a person estimates that the probe has a criterion above the decision crite-
rion d, he or she assigns it to the category of objects with criterion values above the de-
cision criterion (Category A).Eq. (7) applies also to standard classification designs with
predefined categories that are not defined in terms of a continuous criterion variable. In this
case,d = .5, and the criterion is simply 1 for Category A exemplars and 0 otherwise. It
is easily shown that this is equivalent to a deterministic version ofEq. (2) for the context
model.

Despite the deterministic decision rule, PROBEX produces matching in aggregated data.
Because the sampling of exemplars is probabilistic, the decisions differ from trial to trial even
if the decision rule is deterministic. Moreover, the matching (or variability) co-varies with
the task difficulty, as defined by the difference betweenc(t̄) andd. For difficult probes with
a small difference betweenc(t̄) andd, there is more variability. Thus, for example, in most
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knowledge states, PROBEX produces more variability for the decision whether Helsinki has
more or less than 500,000 inhabitants than for the decision whether Hong Kong has more or
less than 500,000 inhabitants. This mimics the relationship between predictability (difficulty)
and consistency in multiple-cue judgment research (Brehmer, 1994).

3.3.3. Subjective probability judgment
With minor modifications,Eq. (2)of the context model applies also to subjective probability

judgment. Let event outcome indexe(x̄i ∈ A) be 1 for exemplars that belong to Category A and
0 otherwise. The predictedjudgment P(A) of the probabilitythat probēt belongs to Category
A after the terminal iterationN is,

P(A) = (φ/M) + ∑N
i=1S(t̄, x̄i)e(x̄i ∈ A)

φ + ∑N
i=1S(t̄, x̄i)

+ ε, (8)

whereφ is a free parameter in the interval [0,+∞] for dampening, andM is the number
of exclusive events into which the probability space is partitioned (e.g., with two alternative
events,M = 2). The parameterφ dampens the effect of the retrieved exemplars when the
sample sizeN is small. For example, without a dampening parameter, the probability is always
1 or 0 when the algorithm terminates after the first exemplar. The dampening implies a more
modest estimate of((φ/M) + S(t̄, x̄i))/(φ + S(t̄, x̄i)) or (φ/M)/(φ + S(t̄, x̄i)). When no
exemplars are retrieved, the probability is assessed to be 1/M corresponding to a uniform
“prior” probability (e.g., withM = 2, the “prior” probability is .5).

In the general case (0< s < 1), Eq. (8) is a similarity-graded probability. However, in
contrast toEq. (2)of the context model,Eq. (8) resembles an optimal Bayesian estimate of
a relative frequency (proportion). The dampening essentially plays the role of theα andβ

parameters of theβ-distribution in Bayesian estimation (with the additional constraint that
α = β). Although, not part of a process model,Anderson (1990)introduced a dampening
in his rational model(see alsoNosofsky, Kruschke, & McKinley, 1992). ε is a normally and
independently distributed response error with mean 0 in the use of the overt probability scale.
The judgments fromEq. (8)are truncated to fall in the interval [0, 1]: values larger than 1 are
assigned probability 1, values below 0 are assigned probability 0 (Juslin et al., 1997, 1999).3

The response error is controlled by theresponse error parameterσ 2
r .

3.3.4. Stopping rule
The rule for terminating exemplar retrieval may differ depending on the task (e.g., whether

a point-estimate or a categorization is the focal concern). In the applications presented below,
the task revolves around a continuous criterion dimension (i.e., city-population). Therefore,
we concentrate on a simple stopping rule appropriate to this task. Sampling is terminated at
the first iterationN where this condition is satisfied as

|c′(t̄ , n) − c′(t̄ , n − 1)| < k|c′(t̄ , n)|. (9)

The free parameterk decides the sensitivity of the stopping rule. Intuitively, one can
think of this rule as a way of judging when the change in the point estimate fromc′(t̄ , n −
1) to c′(t̄ , n) is too small to merit continued sampling. Although the stopping rule is
error-prone because successive point estimates are sometimes equal by chance, it minimizes
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the need to store intermediate steps in the process. Parameterk determines the extent of
retrieval: for smallk PROBEX samples extensively, but for largek it terminates after re-
trieval of a few exemplars. Parameterk is sensitive to cost–benefit considerations and af-
fords implementation of an exemplar model in line with the notion of bounded
rationality.

One important aspect of PROBEX is that it belongs to the class oflazy algorithmsthat
has proven useful in artificial intelligence due to their flexibility (Aha, 1997). This latent
property of exemplar models means that they need not rely onpre-computed knowledge.
(Pre-computed knowledge may nevertheless enter to the extent that an exemplar model mod-
ifies its attention weights to a specific task, see, e.g.,Nosofsky, 1986.) All computations by
PROBEX are performed at the time of the judgment. Algorithms extensively premised on
pre-computed knowledge (e.g., cue validities) soon become untenable. To attain flexibility
they require ominous foresight for future task demands or enormous amounts of pre-computed
knowledge.

In a previous section, we proposed that similarity-graded judgment afford an advantage in
states of limited knowledge. In this section, we propose that PROBEX furnishes such an algo-
rithm that applies similarity-graded judgment to generic knowledge, making psychologically
plausible demands on storage, retrieval and computation. To substantiate these claims, we turn
next to an analysis of the ecological rationality of PROBEX.

4. The ecological rationality of PROBEX

Gigerenzer and Goldstein (1996)demonstrated that simple heuristics asTake-The-Best
(TTB) are able to compete evenly or even outperform more complex algorithms like linear
multiple regression when applied to a real environment. The task in the original study on eco-
logical rationality was the German city-population task, where the algorithms are fed with pair
comparisons such as “Which city has the larger population: Heidelberg or Erlangen?” TTB
searches the cue values for each city in a particular order (defined below) and makes a decision
for the first pair of cues that differentiate between the cities. Comparing binary numbers is a
good analogy: 00101001 is larger than 00100110, because the fifth digit differentiates between
the numbers. In this case the decision is always correct.

Knowledge of the environment consists of nine binary cue values for each of 83 Ger-
man cities, for example, whether the city is state-capital or not, whether it has a university
or not. Theecological validityof a cue is defined by the relative frequency with which it
selects the correct answer when applied to all pair-wise comparisons between the 83 Ger-
man cities. For example, consistently choosing a city with a university over a city with
no university leads to a relative frequency of correct decisions equal to .71. TTB relies on
the first most valid cue that is applicable to a question. Multiple regression integrates all
nine cues into an optimal population estimate for each of two cities and decides on the one
with the higher estimate. The idea is that, where as multiple regression embodies the ide-
als of classical rationalityimplying unlimited time, knowledge and computational power,
TTB provides a psychologically plausible alternative satisfyingbounded rationality(Simon,
1990).
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The results presented byGigerenzer and Goldstein (1996)support two conclusions. First,
the rationality of an algorithm cannot be properly evaluated without careful attention to the
environment that provides the behavioral support for the algorithm. Second, considering the
impressive accuracy and the low computational cost of TTB, it provides a viable alternative to
more complex algorithms: It is “fast and frugal.”

4.1. Varieties of frugality

One crucial aspect of the argument presented byGigerenzer and Goldstein (1996)concerns
the frugality of the algorithms. In the following, we broaden the discussion of frugality in
Gigerenzer and Goldstein (1996)by addressing three complementary aspects of frugality:
demands on storage, computation, and knowledge access.

4.1.1. Storage
With PROBEX, there is no need for pre-computed knowledge, over and above storage of

exemplars. While the extensive storage of exemplars is consistent with the huge storage capacity
of long-term memory, the memory demands implied by exemplar models is sometimes raised
as a concern (e.g.,Nosofsky et al., 1994). While this concern is difficult to evaluate without a
proper theory of the cost and other limitations on storage, it is mainly warranted in the case of
exemplar models that presumeobligatory storageof each object, or even each presentation of
an object, such asLogan’s (1988)instance-race model (see the discussion inBarsalou et al.,
1998). This is not presumed by PROBEX: it only states that whatever exemplars have been
stored provide input to similarity-based inference. As illustrated below, PROBEX is remarkably
robust when few exemplars are stored.

The processing of situations or objects in one way or another is required by any algorithm,
explicitly modeled or not. In regard to TTB and multiple regression we discern two possibilities.
First: abstractions in the form of cue validities or beta-weights are continuously computed and
updated as new objects are encountered with no memory storage of the objects. This is feasible
when the task is known already when the objects in the environment are encountered. For
example, a person knowing that he or she is later required to predict population from the nine
cue values of German cities, may (somehow) compute the nine cue validities appropriate to
this specific task and later apply the TTB algorithm.

When future task demands are difficult to foresee at the time of exposure with the objects,
the alternative is to computeall contingencies between the variables that describe the objects
(what might be referred to as “obligatory computation”). The German city-population task
with 10 variables (C = 10) requires pre-computation of 90 cue validities for TTB and 90
beta-weights for multiple regression. Because the number of pre-computed abstractions is
C2 −C, the number of stored abstractions increases rapidly (e.g., 9,900 forC = 100, 999,000
for C = 1,000). Clearly, as a tool to make inferences for the multitude of unforeseen tasks that
define our everyday environment, this is not a frugal solution in terms of storage.

A second possibility is that TTB and multiple regression store all exemplars and compu-
tation of abstractions is postponed to the time of the judgment, that is, to the time where the
abstractions required by the specific task are known. As detailed next, this poses problems for
the idea that TTB is a fast and frugal at the time of the judgment.
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4.1.2. Computation
To compute the cue validity for each cue, TTB has to check every pair of cities that can

be generated from the knowledge matrix. For each pair, it has to ascertain whether the cue
discriminates between the cities, and if it does, if the cue selects the correct or the wrong
answer. The number of checks is.5(K(K − 1))C, a number ranging between nine checks
per cue for training set-size 2 to 28,440 checks at training set-size 80. The computational
complexity to derive the order of the cue validities grows with the square of the number of
exemplarsK (i.e., withCK2). Regardless of whether this is done continuously as the objects are
encountered as a matter of automatic processing of frequency, or at the time of the judgment,
it amounts to extensive computation. (With multiple regression the computational complexity
becomes even more daunting.) However, if all cue validities are pre-computed and ordered,
TTB only has to check between 1 andC cues to make a decision. This is the frugality stressed
by Gigerenzer and Goldstein (1996).

With PROBEX, the extent of computation is determined by the number of sampled ex-
emplars, which in turn depends jointly on the parameterk and the difficulty of the task. In
particular, the parameterk can be set to make PROBEX sample only a few exemplars to make
a judgment, thereby instantiating a fast-and-frugal exemplar model. Note that the access to
exemplars is a matter ofretrieval—much as when TTB retrieves the cues. The difference is
that TTB (and multiple regression) retrieves knowledge in the form of abstractions that have
been pre-computed for very specific inferential purposes (i.e., cue validities).

4.1.3. Knowledge-access
The German city-environment is a matrix with 83 rows, one for each German city, and

10 columns, nine binary cues and one continuous dimension, population. States of limited
knowledge can be modeled by knowledge of 2 and 80 cities. Note that at least 3 cities are
always left for the test set, thus the maximum of 80 cities. TTB computes the cue validities,
and multiple regression, the beta-weights from the set of all known cities. The cells in the matrix
accessed by these algorithms is therefore 10 times the number of known cities, as indicated by
the dotted line inFig. 1.

In PROBEX, activation of exemplars is an automatic and parallel process that produces
retrieval from memory, much as when a probe is assumed to elicit retrieval of cues with TTB
or multiple linear regression. All algorithms presume retrieval, although these are not explicitly
spelled out in the discussions of TTB or multiple linear regression (Gigerenzer et al., 1999).
In PROBEX, thejudgment process—corresponding to cue substitution with TTB and cue
integration with multiple regression—is the integration of retrieved exemplars.

If PROBEX samples all of the exemplars (k = 0), it will access the same number of cells.
Fig. 1, however, plots the number of cells accessed by PROBEX as a function of the number
of known cities (training set size) for different stopping parametersk. The similarity parameter
s in the execution of PROBEX was .1. (The other two parameters of PROBEX refer to overt
probability assessments and have no effect on the decisions in the German city-population
task.) The curves plotted inFig. 1are the results of applying the PROBEX algorithm outlined
above to the German city-population task. Regardless of the number of known cities, the
minimum number of cells accessed by PROBEX is 20. This occurs with very high values of
the stopping parameterk. In this case, PROBEX retrieves only one exemplar for each probe in
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Fig. 1. The mean number of cells accessed in the declarative knowledge base for the German city-population task as
a function of the number of known cities (the training set size). The dotted line represent the cells accessed by TTB
and linear multiple regression. The solid lines are the number of cells accessed by PROBEX for different stopping
parametersk.

the pair-comparison. The values ofk plotted inFig. 1are 0, .0001, .01, .7;k = .7 is the value
fitted to the data presented in the empirical section.

In general, PROBEX relies on a small fraction of the cells retrieved by the other algorithms.
For example, atk = .01 and 40 known cities, PROBEX will only access 13% of the cells
accessed by TTB and multiple regression. Atk = .7 and 29 known cities, parameter values
that are appropriate to empirical data below, PROBEX will access 8% of the cells accessed
by the other algorithms. As the simulations presented below demonstrate, for appropriate
values of thes parameter the accuracy of the decisions is largely unaffected by the number
of sampled exemplars (as determined byk). Simulation 3 below demonstrates that whenk is
increased from 0 (exhaustive sampling) to .01, the accuracy in the binary discrimination task
between German city-populations only decreases from .637 to .630, but the percentage of cells
accessed decreases from 100% to only about 10%.Fig. 1thus suggests that PROBEX maintains
high accuracy while effectively minimizing the need to access knowledge. We propose that,
considering the flexibility required in a complex environment with unforeseen demands, the
frugality favored by evolution is likely to be that of a “lazy algorithm.”

4.2. Accuracy and robustness

To get a benchmark it is natural to compare PROBEX with TTB and linear multiple regres-
sion in the German city-population task.Gigerenzer and Goldstein (1996)tested the algorithms
by feeding them all the pair-wise comparisons between German cities with more than 100,000
inhabitants. A weakness of the test procedure was that the knowledge of the algorithms was
assumed to consist of all cities (Persson, 1996). When the experience consists of a small sam-
ple, the sample will sometimes suggest the wrong cue-direction (e.g., when, due to sampling
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error, only small cities with universities have been encountered, suggesting that university
predicts small population). A better test (Czerlinsky, Gigerenzer, & Goldstein, 1999) is to split
the set of German cities into one training and one test set, where ecological cue validities are
estimated from the training set. This set is thus used to learn the parameters of the algorithms
(e.g., beta weights) that are then tested on tasks from the test set. This cross-validation is a true
test of the robustness of an algorithm and detects over-fitting to the training set. (SeePersson
& Juslin, 2000, on the crucial importance of detecting the correct cue-directions in the German
city-population task, cf.Dawes, 1982.)

We also tested the algorithms when the number of cities in the training set was very low.
From an evolutionary perspective, it is important that a decision algorithm is good when
information is low, because the decision-maker has to survive also as a “neophyte.” Moreover,
the performance of any useful algorithm soon converges on the limit imposed by the knowledge
state (i.e., the nine cues in the German city-population task). Thus, the small training sets most
clearly distinguish between good and poor algorithms.

4.2.1. Simulation 1: Accuracy of binary decisions
PROBEX competes with TTB and linear multiple regression. The sizeK of the training set

(i.e., the cities known to the algorithms) is varied between 2 and 80 cities. To give regression
a fair chance also for the smaller training sets (e.g., where the number of observations may be
smaller than the number of beta-weights to be estimated), we relied on ridge-regression4 (see
Garg, 1984, for an introduction). We also provide the data for ordinary regression. In regard
to frugality, it is of interest to investigate the accuracy of a “minimalist-version” of PROBEX
where only a single exemplar is retrieved for each of the two probes in the two-alternative
task (i.e., instantiating a “nearest neighbor algorithm”). Minimalist PROBEX implies no in-
formation integration, only the similarity-based retrieval of a single pair of exemplars. Hence,
while the other algorithms rely on all known objects, Minimalist PROBEX constrains the
computation and retrieval to an absolute minimum.

4.2.1.1. Method.The proportion of correct decisions among the pair-comparisons of the test set
was the dependent variable. For each training set-size (2–80), 1,000 participants were simulated.
For each simulated participant, the German cities were randomly partitioned into new and
independent training and test sets. PROBEX was executed withs = .5 (a similarity-graded
probability) andk = 0 (exhaustive sampling of the training set). The other algorithms estimated
task-specific parameters from the training set (e.g., beta-weights appropriate for the German
city-populations). The remaining cities defined the test set (size 3–81). The data for the 83
German cities was collected from the Appendix ofGigerenzer and Goldstein (1996).

4.2.1.2. Results and discussion.The highest proportion of correct decisions was achieved by
PROBEX (.69), closely followed by both TTB and ridge regression (.68 for both). The lowest
accuracy was attained by multiple regression (.57), which was even beaten by Minimalist
PROBEX (.61).5 Note that the test procedure used here to provide a stringent test of the
algorithms puts PROBEX at a particular disadvantage, as compared to a real-life application.
In realistic applications, it is likely that objects from both the training and test sets appear in
future judgment tasks. Because the training objects are stored as exemplars in PROBEX, the
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correct criterion values for these objects can be retrieved directly. In this case, the accuracy of
PROBEX increases. The other algorithms attain the same beneficial effect of testing against
both training and test sets only by storingboth all exemplars and abstractions (e.g., beta-
weights).

The results are presented inFig. 2A. Because the algorithms converge on similar asymptotes
at high training set sizes, thex-axes inFig. 2are in logarithms, thus emphasizing the range were
“the action” is. When PROBEX samples all exemplars of the training set—as is always done
by TTB and regression—it dominates over its competitors regardless of the training set size.
The performance of multiple regression is extremely poor, once that the parameters have to be
estimated from the training set (i.e., rather than calculated from the entire set of objects and
provideda priori to the algorithm). The explanation is that a complex algorithm like multiple
regression is particularly susceptible to the problem of over-fitting. Thus, while regression
may provide a good account of the training set, the beta-weights from the training set fail to
generalize appropriately to the test set. Over-fitting is more than a technical problem—it is
a real and profound challenge for any cognitive algorithm. This poor performance contrasts
sharply with the robustness of simpler algorithms, like PROBEX and TTB. On the smallest
training sets, ridge regression performs on par with PROBEX, but this is due to the ridge
constant chosen to fit very small samples.

Minimalist PROBEX performs poorer than its competitors, but nonetheless surprisingly
well considering the minimal computational cost that is invested in the judgment. Arguably,
if we take into accountboththe computations performed prior to and at the time of judgment,
it is difficult to come up with a more frugal algorithm. A complex algorithm, like multiple
regression is only better than Minimalist PROBEX when the training set exceeds 55 cities. The
Minimalist PROBEX relies on a similarity parameters = .1, a similarity-graded probability.
Because only one exemplar is sampled, it is important that this exemplar is similar to the probe
ands should thus be on the “picky” side (i.e., low).

The weak spot of TTB is inferences from few training exemplars. If few objects are known,
there is not enough information to identify the correct order of the cue validities and it is better
to consider all cues and integrate all of this information into a similarity-graded judgment. If
experience is allowed to shape the rank-order of cue validities list to perfection, however, TTB
is an efficient algorithm, at least for often-repeated tasks.

Simulation 1 illustrates two aspects of the versatility of lazy algorithms such as PROBEX.
First, when the algorithms benefit from the complete sample ofK known objects, PROBEX
dominates over its competitors, in particular in states of limited knowledge (K < 30). Second,
Minimalist PROBEX performs better than chancewithout anypre-computed knowledge and
no information integration at the time of the judgment, even outperforming multiple regression
for training sets containing less than 55 cities.

4.2.2. Simulation 2: Precision of point estimates
In Simulation 1, the precision of the point estimates was obscured by the binary choice

task. Because PROBEX and linear multiple regression provide explicit point estimates the
precision of these estimates can be more carefully investigated. TTB does not apply to this
task and was therefore replaced by a companion fast-and-frugal algorithm appropriate to the
point-estimation task,QUICKEST(Hertwig, Hoffrage, & Martignon, 1999).
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Fig. 2. (A) Proportion correct for PROBEX, Minimalist PROBEX that only samples a single exemplar,
Take-The-Best (TTB), linear ridge regression (RIDGE), and linear multiple regression (MULREG) in the Ger-
man city-population task, plotted as a function of the logarithm of the number of known objects (German cities).
(B) Mean absolute deviations between predicted and actual German city-populations for the same algorithms, except
that TTB has been replaced by the algorithm QUICKEST (see the text for details).
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QUICKEST is appropriate to skewed distributions like that of the German city-populations,
where most cities have small populations. For each cue, the mean population for cities with
negative cue values is computed (negative cue values are those that go with small popula-
tions, e.g., not being a state capital). Cues are rank-ordered from the cue with the lowest
mean given a negative cue value to the cue with the highest mean given a negative cue
value.6 To estimate population the algorithm starts by checking if a city has the negative
cue value that is first in this rank-order, then the next, and so on until a match is encoun-
tered. As soon as a match is encountered, the conditional mean associated with this cue
value is reported as the estimate. Given the skew of the city-population distribution with
mostly small cities, this algorithm is frugal in the sense of minimizing the number of cues
that have to be accessed. That is, because most cities are small, the algorithm often stops
for the first negative cue-value in the rank-order. As with TTB, QUICKEST is frugal at
the time of judgmentper se, but needs a considerable amount of pre-computation to be
executed.

4.2.2.1. Method.The method was similar to the one used in Simulation 1, with the qualification
that the mean absolute deviation of the estimates was the object of analysis.

4.2.2.2. Result and discussion.The overall mean absolute deviation was 158,528 for PROBEX,
166,932 for ridge regression, 173,001 for QUICKEST, 183,247 for Minimalist PROBEX,
and 191,885 for multiple regression. PROBEX is overall the most robust algorithm, although
QUICKEST is as good with 2–5 exemplars in the training set and all algorithms converge to
the same performance at large training sets (seeFig. 2B). Ridge regression is best with much
information. Again, ordinary multiple linear regression shows an extreme lack of robustness
and performs poorly except when almost all objects are included in the training set. When the
training set is less than 20 cities, Minimalist PROBEX is surprisingly close to algorithms that
take advantage of all objects in the training set.

4.2.3. Simulation 3: The role of similarity
In the judgment literature, frequencies have generally been affiliated with rationality and

similarity with irrationality (cognitive biases). Depending on the similarity parameters of
PROBEX, it can implement two kinds of frequentistic algorithms. The sloppy frequentist
(s = 1) enters all exemplars alike and reports the base-rate, and the picky frequentist (s = 0)
enters only identical exemplars into the judgment. In the general case (0< s < 1), PROBEX
responds with a similarity-graded probability. We address two questions: (a) Does an algorithm
that exploits the similarity-structure of real environments confer an advantage over purely
frequentistic algorithms? (b) What parameters of PROBEX provide the best balance between
high accuracy, robustness, and low computational cost?

4.2.3.1. Method.The same procedure was used as in Simulation 1, but the parameters was
tested in the range of .1 to 1 and the size of the training set was 2, 5, 10 and 40 cities. The
following values of the stopping rule parameterkwere investigated: 0, .01, and .1. Whenk = 0,
the sampling of exemplars will not stop until the entire training set ofK exemplars has been
exhausted (as all algorithms except Minimalist PROBEX did in Simulation 1).
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Fig. 3. (A) The overall proportion correct for PROBEX as a function of the similarity parameters. (B) The proportion
correct when the training set contains two cities. (C) The proportion correct when the training set contains five cities.
(D) The proportion correct when the training set contains 10 cities. (E) The proportion correct when the training set
contains 40 cities. (k = 0 amounts to sampling the entire training set of exemplars,s = 0 is the picky frequentist,
ands = 1 is the sloppy frequentist.)
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4.2.3.2. Results and discussion.We evaluate the effect of the similarity parameters in two
respects: overall accuracy and robustness. First, consider the intermediate levels ofs, s =
.1, .2, . . . , .9. The main effect across the three levels ofk (determining the number of sam-
pled exemplars) and the four training set sizesK indicates a higher overall accuracy for
s-values below .5 (seeFig. 3A). In this range the overall accuracy is approximately .63.
These results suggest a slight advantage for similarity-graded probability on the “picky-
side.”

The results for each level of parameterk and for each size of the training setK allow
us to understand the nature of this advantage (seeFig. 3B–F). As expected, the accuracy
increases as the training set sizeK increases from 2 objects (Fig. 3A) to 40 objects (Fig. 3F).
Overall, accuracy also increases with more extensive sampling (i.e., for lowerk-values). More
interestingly, however, there is an interaction between these two factors. At low values of
s, accuracy is little affected by the number of exemplars sampled (i.e., by the parameterk)
and performance is reasonably close to the accuracy at complete sampling of the training set
(k = 0). Thus, lowers-values are superior in regard to robustness.

The accuracy of PROBEX with the extreme values ofs that implements purely frequentistic
algorithms is considerably poorer. Whensis 1, the sloppy frequentist, all exemplars are retrieved
for both of the two compared cities and the two estimates become trivially identical. This only
allows random performance (proportion correct .5). A picky frequentist (s = 0), on the other
hand, finds few or no identical exemplars to retrieve, in particular at the smaller training sets.
Given the low number of identical cue-patterns in regard to the nine cue-dimensions for the
German city-populations, this only allows for a performance marginally higher than expected
by chance. Notably, only similarity-graded probability provides both sufficient relevance of
the retrieved exemplars and a sufficient number of exemplars to yield useful inference from
limited knowledge.

5. The psychological plausibility of PROBEX

In Juslin, Nilsson, and Olsson (2001), PROBEX was tested against three alternative models
of probability judgment in a category learning task: therepresentativeness heuristicinterpreted
either as similarity to category prototype or as relative likelihood (Tversky & Kahneman,
1983), andcue-based relative frequency(Björkman, 1994; Gigerenzer et al., 1991; Juslin,
1994). (Because of its vagueness, representativeness was thus entered in two versions.) The
participants task was to predict if the stock value of 15 fictive companies would rise or fall in
the next year. Each company was described by four binary features. With outcome feedback,
the participants were trained to make rise/fall decisions in four training blocks á 60 trials each.
In a test phase that followed after each training block, they assessed theprobability that the
stock value of each company would rise in the next year. The category structure was created
to disentangle predictions by the four models (seeJuslin et al., 2001).

Fig. 4presents the results of fitting two-parameter versions of each model to the probability
judgments made in the four test blocks. PROBEX provides a superior fit to data in all four
test blocks, both in terms of the root mean square deviation (RMSD) between the predictions
and data (Fig. 4A) and variancer2 accounted for (Fig. 4B). In the last test block, PROBEX



P. Juslin, M. Persson / Cognitive Science 26 (2002) 563–607 583

Fig. 4. The fit of PROBEX, representativeness as relative likelihood (REPR(L)). Representativeness as similarity
to category prototype (REPR(P)), and cue-based relative frequency (cue-based) to the probability judgments in a
category learning experiment. (A) RMSD between predictions and data as a function of test block (root mean square
error in data,se = .05). (B) Coefficients of determinationr2 as a function of test block. Adapted fromJuslin et al.
(2001).

accounts for 95% of the variance in data with an RMSD of .058 (to compare with a root mean
square error in data of .05). It seems clear that the judgments are responsive to both similarity
and frequency in the manner modeled by PROBEX (seeJuslin et al., 2001, for details and
Sieck & Yates, 2001, for additional support for exemplar models).

In this article, we complement these results by applying PROBEX to a generic knowledge
task of the sort commonly used in research on probability judgment. The prime questions were:
(1) Is PROBEX a viable description of the inferences in a generic knowledge task? (2) If so,
will the fitted parameters suggest a fast-and-frugal exemplar model?
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In the experiment, we investigated the overall fit of PROBEX to the point estimates, binary
decisions, subjective probability judgments, and response times by humans. The task was
similar to the generic knowledge task used in the analysis of ecological rationality. The point
estimates thus concerned “best guesses” about the population of German cities (“What is the
population of Bonn?”) and the decision tasks concerned whether presented German cities have
populations above or below 180,000 inhabitants. In addition, the participants made probability
judgments with three different judgment formats.

In research on subjective probability judgment, one of the most pervasive effects, in terms
of the magnitude, isformat dependence(Juslin et al., 1999; Klayman, Soll, Gonzales-Vallejo,
& Barlas, 1999). In calibration studies, subjective probabilities are compared to “objective”
probabilities, often by plotting relative frequencies against subjective probability categories
in calibration graphs. If the subjective probabilities are realized in terms of the corresponding
relative frequencies, the participants are calibrated (e.g., if 70% of the events assigned proba-
bility .7 occur). Particular attention has been paid to the assessment of too extreme subjective
probabilities, so-calledoverconfidence bias(e.g.,Erev, Wallsten, & Budescu, 1994; Gigerenzer
et al., 1991; Juslin, Winman, & Olsson, 2000).

Format-dependence entails that with a given task-content there is underconfidence when
participants assess a probability on a scale between .5 and 1, and yet overconfidence when
thesame participants assess the same task contenton a scale between 0 and 1 (Juslin et al.,
1997). Moreover, when the same task content is approached with interval estimation there is
often extreme overconfidence (Juslin et al., 1999). In the experiment presented below, the three
formats (which we describe in detail afterwards) were provided in a within-subjects design.
The prime concern was whether PROBEX could reproduce format-dependence.

With thehalf-range format, the participants decided on one of two alternative answers and
assessed confidence in this decision as a probability between .5 and 1. For example:

The population of Hannover exceeds 180,000 inhabitants.

(a) True (b) False

50% 60% 70% 80% 90% 100%
Random Certain

With this format, over/underconfidence is measured by the difference between the mean
probability assigned to the chosen answer and the proportion correct, where a positive difference
indicates overconfidence bias. For example, if the participants are 90% certain on average, but
only have 80% correct answers, there is 10% overconfidence. Thefull-range formatrequires
an assessment of the probability that a statement is true on a scale from 0 to 1.

The population of Hannover exceeds 180,000 inhabitants.
What is the probability that this statement is true?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Certainly false Certainly true

Clearly, if the participant responded with “True” and “90%” confidence in the half-range
task, he or she should assess the full-range probability to “90%.” In full-range, overconfidence
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is evidenced by too low proportions of true statements in high subjective probability categories
and too high proportions of true statements in low subjective probability categories (i.e., by too
extreme subjective probabilities). Overconfidence is indexed by transforming the full-range
probabilities into half-range decisions and half-range probability judgments. Thus, full-range
probabilities above .5 are taken to imply decisions in favor of the statement with the assigned
probability as the half-range probability. Full-range probabilities below .5 imply a decision that
the statement is false with the half-range probability equal to one minus the stated full-range
probability (e.g., a full-range probability of .3 is interpreted as implying a decision “False”
with half-range probability .7). After this transformation, over/underconfidence is computed
in the same manner as for the half-range format.

Interval estimationrequires assessment of the upper and lower bound of an interval intended
to include the true value of a quantity with a pre-stated probability. For example: “Provide the
smallest interval within which you are 80% certain that the true population of Hannover lies. The
population of Hannover lies between and inhabitants with 80% confidence
(or probability .8).”

Less transparently, perhaps, a participant responding with the decision “True” and “90%”
confidence in the above half-range task should assess 180,000 inhabitants as the upper limit
of his or her .8 interval. Overconfidence is measured by the difference between the pre-stated
probability and the observed proportion of true values that fall within the interval. For example,
if 50% of the true values fall within the 80% interval, overconfidence is 30%.

From a formal standpoint, these three formats are merely different ways of eliciting the
same subjective probability distribution. The phenomenon of format dependence, however,
entails that they lead to contradictory results (seeJuslin et al., 1999, for a discussion). When
PROBEX was fitted to data, we thus required it, not only to generate appropriate point estimates,
decisions, probability distributions and response times, but also to map the inconsistent pattern
of over- and underconfidence across these three formats.

To Swedish undergraduates many German cities are rather unfamiliar. Therefore, we ex-
pected them often to rely on whatGigerenzer and Goldstein (1996)refer to as the recognition
principle. When applied to the choice task with pairs of German cities, this principle implies
that when one but not the other of the cities is recognized, the participant guesses that the
recognized city has the higher population. To implement all three assessment formats in a
comparable manner, the tasks used in the experiment reported below concern the population
of a single German city. In this task, we interpret the recognition principle to imply that known
cities have larger populations on average than unknown cities. We also extend the recognition
principle to cover limited knowledge of cues. If the probability of knowing a city is low, the
probability of knowing each associated cue-value is low also.

Note that in PROBEX cue-based inference and the recognition principle are implemented
by the same process. For example, Swedish participants might find Leverkusen to be more
similar to Höcklenspiel than to Berlin, even though little, or perhaps nothing, is known about
Leverkusen and Höcklenspiel. Unfamiliar cities have many unknown features (“?”) and—
as detailed above—these provide just another feature in the similarity analysis. Thus, if the
participant knows the population of one, otherwise unfamiliar, German city—presumably, a
small city due to the environmental correlation between recognition and population-size—he
or she will guess that Leverkusen has a small population. To model how many, and which,
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German cities were known to the participants, they also indicated which of the 83 German
cities used in the study they recognized.

Finally, PROBEX does not allow analytic procedures to find optimal parameter estimates.
Furthermore, the dependent variables are defined in terms of different metrics (i.e., the point
estimates, decisions, and subjective probabilities). There is no obvious scheme for weighting
together prediction errors into one measure of goodness-of-fit. We relied on a grid-search with
the criterion of finding the parameters that simultaneously produced the best relative fit to data
for each dependent variable (seeAppendix Afor definition).

In the experiment, we therefore concentrate on the following issues: (a) Will PROBEX
and humans make similar point estimates? (b) Will the same items appear “misleading” to
both PROBEX and humans? (c) Will PROBEX and humans produce the same calibration and
display the format-dependence effect? (d) Will the pattern of response times by humans be
well predicted by PROBEX? Finally, conditionally on affirmative (or, at least encouraging)
answers to these questions. (e) Will the best-fitting parameters suggest that the participants
approach the task with a fast-and-frugal exemplar algorithm?

5.1. Methods

5.1.1. Participants
Forty-one undergraduate Psychology students at the University of Uppsala participated in

the experiment. There were 22 male and 19 female participants, with an average age of 25
years. The participants volunteered in order to get a course credit.

5.1.2. Materials
The 83 cities listed in the Appendix ofGigerenzer and Goldstein (1996)were used as the

objects of inference (i.e., all German cities which then had more than a 100,000 inhabitants).
A computer randomly selected the 40 cities presented to the participants from this pool of 83
cities. The task was to estimate the population of the presented German city, and to compare
this population to the median city population within the overall set of 83 cities (i.e., 180,000
inhabitants) in terms of three assessment formats.

For each half-range item, participants decided whether a statement is true or false, and
thereafter assessed confidence as a probability on a scale between “50%” (random choice, or
pure guessing) and “100%” (perfectly certain of having chosen the correct answer). For each
full-range item, the participant assessed the probability that the corresponding statement is
true on a scale between “0%” (certainly false) to “100%” (certainly true). In the half-range and
full-range items, the statements implied that the German city has a population above 180,000
inhabitants, as illustrated in the introduction to this experiment. For interval estimation, the
participants assessed the smallest intervals that included the true value of the population of
the German city with probability 1.0 (100%). The task items were presented one by one on a
computer screen and the computer also controlled the order of presentation.

5.1.3. Design and procedure
The design of the experiment consisted of three within-subjects conditions: (a) items

of the half-range format, (b) items of the full-range format, and (c) items of the interval
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estimation format. The items in each condition were presented in blocks that contained the
same set of 40 randomly selected items (German cities), presented in the same order. The
order in which the three blocks (i.e., conditions) were presented to the participants was
counter-balanced across participants. In each condition, the participants also made a point
estimate of the number of inhabitants in the city for which the probability was assessed.
For every other item in each condition this was made before the probability was assessed,
for the other items it was made after the probability assessments. Finally, a paper form
presenting all 83 cities in alphabetical order was given to the participants, asking them to
indicate which of the cities they recognizedbefore the experiment by underlining their
names.

Each participant was run individually and each session took approximately 1 h. With the
half-range format, it was explained in the instruction that .50 (50%) meant “random” and that
1.0 (100%) meant “certain.” Participants also received a brief written tutorial on the concept of
calibration, and it was stressed that for each particular item, they should select the subjective
probability value that best reflected their degree of confidence for this particular item. In the
full-range instruction it was explained that probability 0 (0%) meant that the statement was
“certainly false.” and that probability 1.0 (100%) meant that the statement was “certainly true.”
Otherwise, the instructions were the same as in the half-range condition. In the instruction for
interval-estimation it was explained that the 1.0 probability interval meant that there should be
no doubt whatsoever that the true value was inside the interval. In other respects, the instructions
were the same as in the other two conditions.

5.2. Results

5.2.1. Fitting PROBEX to data
PROBEX was applied to a data matrix, with nine cue-dimensions, one target variable, and 83

exemplars (matrix withN = 83 andC = 10). The database was collected from the Appendix
of Gigerenzer and Goldstein (1996). The cues (feature values) in the simulation are at best
approximate to the ones used by our participants. We have no way of knowing whether their
inferences were actually based on these nine cue-dimensions. Rather, we take the matrix to be
an estimate of thesimilarity structurethat describes the environment of German cities. The
assumption is: If two cities are similar to each other with regard to the nine cue-dimensions
used in the simulation with PROBEX, on average they are similar also with respect to the
cue-dimensions not coded in the simulation. Nevertheless, our imperfect knowledge of the
knowledge-state of the participants provides a ceiling on the quantitative fit to behavioral data
that can be expected from PROBEX.

We have more knowledge of what cities are known, because this was rated by the participants.
If we score a “recognize response” with 1 and a “not-recognize response” with 0 we get an
estimate of the retrieval probabilitypn for city n. On average the participants reported to have
recognized 29.4 (SD= 12.9), or 35% of the German cities. For example, Berlin was recognized
by all 40 participants and thus getspn = 1, while Neuss was known to only one participant
leading to apn = 1/40. These estimates ofpn were entered in the simulations with a separate
retrieval probability for each city (i.e., in order to implement the recognition principle). For
example, in each specific iteration of PROBEX, the probability that each cue value of Neuss
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is as known 1/40. Unknown probes eliciting a default vector of “?” are thus similar to small
known cities that also contain many “?-marks.”

Because of the addition of a normally distributed response error,Eq. (8) may produce
numbers outside the ranges of the probability scales. The output fromEq. (8)was truncated
separately for the half-range and full-range probability scales. For the full-range format, outputs
from Eq. (8) lower than 0 were assigned overt probability 0, and outputs larger than 1 were
assigned overt probability 1. For the half-range format, outputs lower than .5 were assigned
overt probability .5 and outputs above 1 were assigned overt probability 1.

PROBEX was applied to the knowledge-state matrix with four free parameters, the parame-
tersfor similarity, the parameterφ for dampening, the parameterk for the stopping rule, and the
parameterσ 2

r for response error variance. These parameters were simultaneously fitted to the
data from the half-range and full-range conditions. In the half-range condition, the dependent
variables were the distribution of confidence judgments (6 data points,df = 5) and the propor-
tions correct in each confidence category (6 data points,df = 5). In the full-range-condition,
the dependent variables were the distribution of probability judgments (11 data points,df = 10)
and the proportion of true statements in each probability category (11 data points,df = 10).
In addition, the responses were used to determine the solution probability for each of the 40
items (df = 40) and they made 40 point estimates (df = 40). Altogether, this makes four free
parameters fitted to 114 data points (df = 110).7

Best-fitting parameters were searched by an extensive and iterative grid-search procedure and
RMSD as the error function. The model-fitting procedure is described in detail inAppendix A.
The best-fitting parameter values weres = .04,φ = .9, k = .7, andσ 2

r = .055. The similarity
parameters implies a similarity-graded probability on the picky side. The estimate of the
response error varianceσ 2

r is larger than previous estimates based on similar data (Juslin et al.,
1997, 1999, 2000), perhaps a consequence of the unfamiliar topic of these tasks (to Swedish
participants). The stopping parameterk implies that, on average, only about two exemplars are
sampled before a judgment is made. These parameters (i.e., lows, highk) coincide with those
that afford fast, accurate and robust performance in a state of limited knowledge.

Table 2provides a summary of the data and the predictions by PROBEX for the dependent
variables used in the model-fitting procedure, along with summary statistics for the fit in terms
of RMSD and coefficients of determinationr2. Below, PROBEX, with the same parameters, is
also used to predict calibration with interval estimation and response times.

5.2.2. Prediction of point estimates
In Fig. 5A, mean observed point estimates (n = 40) are plotted against predicted point

estimates. The predictions by PROBEX account for 96% of the variance in the empirical point
estimates (RMSD= 81,330).Fig. 5B and Cplot the participants’ and PROBEX’ estimates,
respectively, against the German city-populations. The correlation between the participants’
median point estimates and true city populations was .95. The correlation between the pre-
dictions by PROBEX and city population was .97. Because both the participants’ median
estimates and PROBEX’ predictions proved quite accurate, the residuals in these estimates
are modest (110,463 and 85,200, respectively). However, there is a correlation between the
errors in participants’ and PROBEX’ estimates (r = .68), illustrating that the participants
and PROBEX share important misconceptions about the populations of the German cities. We
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Table 2
Dependent measures for the simulations with PROBEX and the judgment data from the participants in the experiment

Dependent measure Data set

Judgment Index PROBEX Participants

Point estimates (n = 40) Mean (true, 304,976) 323,287 315,921
Median (true, 179,562) 189,650 182,500
Standard deviation 301,034 343,857
Achievement (r) .97 (r2 = .94) .95 (r2 = .90)
Mean square residual 85,200 110,463
Fit of PROBEX r2 = .96, RMSD= 81,330

(correlation between residuals= .68)

Solution probabilities (n = 40) Mean .68 .68
Fit of PROBEX r2 = .61, RMSD= .11

Probability judgments (n = 34) Mean probability (HR) .68 .68
Proportion correct (HR) .68 .68
Over/underconfidence (HR) 0 0
Mean probability (FR) .48 .43
Over/underconfidence (FR) .09 .09
Fit of PROBEX r2 = .96, RMSD= .06

HR: half-range; FR: full-range, IE: interval estimation.

conclude that PROBEX provides a satisfactory fit to the point estimates and that both PROBEX
and the participants make accurate point estimates, considering the limited knowledge and the
retrieval of very few exemplars (approximately 2).

PROBEX allows a more detailed investigation of the processes. If we disable the recognition
principle by making knowledge perfect for all recognized cities regardless of their size, the
achievement is only .79, as compared to .97 when the recognition principle is implemented. The
fit between PROBEX and the participants’ point estimates is likewise lowered (fromr2 = .96
to .61). This suggests that the “recognition principle” is an important aspect of the processes
that underlie the participants’ judgments. Moreover, as might be expected, this reliance on
recognition is less important for inferences that involve large cities. Removing the recognition
principle for cities with large population has only a modest effect on the correlation between
the predictions by PROBEX and the participants’ judgments (i.e., decreasing from .98 to .92
when only the 12 largest cities with 250,000 or more inhabitants are entered into the calculation
of the correlation). Evidently, large cities tend to be well known to the participants, leaving
little room for the recognition principle to operate, and they have to rely on similarity-based
inferences from known properties.

5.2.3. Prediction of solution probabilities
Fig. 5D plots empirical solution probabilities against predicted solution probabilities. So-

lution probability is defined as the proportion of participants that selected the correct answer
to an item. In half-range, “correct” refers to a decision “True” for cities with a population
above 180,000 inhabitants, and a decision “False” for cities with a population below 180,000
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Fig. 5. (A) Mean point estimates of German city-populations by 40 participants plotted against the predictions by
PROBEX. (B) Participants’ mean estimates plotted against the true values (human achievement). (C) PROBEX’
estimates plotted against the true values (PROBEX achievement). (D) The observed solution probabilities plotted
against the predictions by PROBEX.

inhabitants. In the full-range condition, the solution probability is based on whether the prob-
ability response is in the proper end of the scale. If the statement is correct then probabilities
above .5 are considered correct and if the statement is false then responses below .5 are cor-
rect. Probabilities of .5 were randomly scored as correct or wrong. The solution probabilities
in Fig. 5D are means across both the half-range and the full-range condition (which are al-
most identical). Items with solution probabilities below .5 are cities for which most of the
participants make an erroneous inference (so-called “misleading items”). Cities with solution
probabilities above .5 are the cities for which most participants make a correct inference (cf.
error-dependence, e.g., inJuslin & Olsson, 1997). Will PROBEX make the same errors as
humans do?
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Fig. 5D illustrates that there is a strong positive correlation (r = .78) between predicted
and empirical solution probabilities, although, the fit is obviously poorer than for the point
estimates (Fig. 5A). However, PROBEX correctly identifies 4 out of 7 misleading items and
33 out of 33 non-misleading items. (The correctly categorized items are those in the lower
left and the upper right quadrants ofFig. 5D.) Specifically, both the participants and PROBEX
misjudged the populations of Wuppertal, Bielefeld, Krefeld, and Erfurt. The explanation is that
the recognition principle suggests the wrong answer for these cities. The correct classification
of 37 out of 40 items is impressive given (a) the sampling error in the solution probabilities, and
(b) our very limited knowledge of the specific cue-structures that underlie the judgments. The
positive correlation between the observed and predicted solution probabilities nevertheless
suggest that our database capture important aspects of the similarity structures used by the
participants. Because PROBEX predicts of both confidence and solution probabilities—and
thus what items that will be misleading—quite accurately, it will produce overconfidence bias
when items are selected for difficulty or “misleadingness” (Gigerenzer et al., 1991; Juslin et al.,
2000).We conclude that PROBEX is human-like not only in terms of its achievement, but also
in regard to some of its misconceptions.

5.2.4. Calibration of subjective probabilities
A half-range calibration curve plots the proportion of correct decisions as a function of the

subjective probability assigned to the decision. To the extent that the confidence judgments are
calibrated (realistic), the proportions fall on the identity line (“ideal” calibration inFig. 6A).
Fig. 6Apresents observed and predicted calibration curves for the half-range condition.Fig. 6C
provides the distributions across the six confidence categories (i.e., collapsed across items and
participants).

Observed mean confidence in the half-range condition was .68 (95% confidence inter-
val, CI = ±.01), which coincides with the overall proportion of correct answers, .68 (95%
CI = ±.02). There was thus no general bias and the over/underconfidence score was 0
(95% CI = ±.02). The miscalibration inFig. 6A mainly reflects the regression arising
from stochastic components of the judgment process (seeErev et al., 1994), such as re-
sponse error in the use of the probability scale (Juslin et al., 1997, 1999). Specifically, the
regression is caused by the end-effects imposed by the probability scale. “True” degrees of
belief equal to 1 can only lead to overt probabilities equal to or lower than 1 after the ad-
dition of a response error, while we have the reverse effect at the other end of the scale.
The predictions by PROBEX reproduce the same level of over/underconfidence (0) as in
data, with identical mean confidence (.68) and proportion correct (.68). Despite some id-
iosyncrasies, the predicted calibration curves capture the overall shape of its empirical
counterpart.

Fig. 6B presents data and predictions for the full-range condition where the participants
assessed the probability that a statement is true on a scale between 0 and 1.0. InFig. 6B, the
x-axis is therefore scaled from 0 to 1. A second difference fromFig. 6A is that the proportions
on they-axis in Fig. 6B are not specifically proportionscorrect (i.e., no choice precedes
the full-range assessment), but the proportion of the statements that are true. As inFig. 6A,
however, perfect calibration is a calibration curve that falls on the identity line.Fig. 6Dpresents
the distribution over the 11 probability categories.
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Fig. 6. (A) Observed calibration curve for the half-range condition and predictions by PROBEX. (B) Observed
calibration curve for the full-range condition and predictions by PROBEX. (C) Observed distribution across the six
categories of the half-range probability scale and predictions by PROBEX. (D) Observed distribution across the 11
categories of the full-range probability scale and predictions by PROBEX.

The observed calibration curve inFig. 6B that suggests modest calibration has two salient
features. First, there is anunderestimationof the probability that the city has a population that
exceeds 180,000 inhabitants (i.e., this is reflected in a calibration curve above the diagonal).8 By
experimental design 50% of the statements were true (180,000 is the median city population),
but the mean probability was .43 (95% CI= ±.01). Second, the curve drops for the highest
subjective probabilities in a rather perplexing way.

The predictions by PROBEX are presented inFig. 6B and D, and inTable 2. PROBEX
parallels the under-estimation of the probability that a city has more than 180,000 inhabitants,
although to a lower extent than in humans. The predicted mean probability is .48. The expla-
nation is that many probes are unknown to the participants (and to PROBEX). Because of the
correlation between recognition and population, the populations of vaguely known exemplars
are likely to be small. PROBEX therefore assigns new unknown cities a low probability of
having a large population. The reason why this tendency is stronger in the participant data is
presumably that the participants draw on a larger and even more biased exemplar knowledge
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base than PROBEX including other, primarily very large European cities, like London and
Paris. The slope of the calibration curve, again disclosing regression due to the response error,
is similar for the data and PROBEX.

On the other hand, there are two deviations between predictions and data. First, although
the calibration curve produced by PROBEX for the full-range condition flattens out somewhat
in the highest probability categories, PROBEX fails to reproduce the drop in the empirical
calibration curve. At present, we have no explanation for this drop in the calibration curve, but
we propose that it reflect some idiosyncrasy in the cue-structures that underlie the performance
of the participants. Second: In the observed response distribution there is a peak in the .5
category that is not captured by the predictions. One interpretation is that the .5 responses
are a mix of two different responses, inferential responses (modeled by PROBEX) and truly
random decisions made without any attempt to make an inference. (“I know nothing at all
about German cites, so I respond 50/50.”) A similar distinction is explicitly modeled in the
combined error model(Juslin et al., 1997, 1999).

In the interval estimation condition, finally, the participants assess intervals intended to
include the true value with probability 1 (100% certainty). As often observed in previous
studies, there was gross overconfidence with the interval estimation format. The 1.0 intervals
only included the true values with an observed proportion of .72 (95% CI= ±.05).

The over/underconfidence with interval estimation expected from the full-range calibration
curve generated by PROBEX was approximated in the following way. The expected proportion
falling within the 1.0 probability interval was estimated by computing the difference between
the proportion of true statements in subjective probability category 1.0 minus the proportion of
true statements in subjective probability category 0. This is the expected proportion within the
1.0 probability interval if the participants disclose the same calibration in their placement of
the upper (1.0 fractile) and the lower (0 fractile) limits as they do in their full-range assessment.
The predicted proportion falling within the 1.0 interval is 62, implying a an overconfidence of
.38 (i.e., 1− .62). The corresponding observed proportion in the interval estimation condition
was .72 implying an overconfidence of 28.

One account for this difference is that the predictions derived from the full-range calibration
curve are more affected by the scale end-effects imposed by the [0, 1] limit of the probability
assessment scale that contribute to the observed overconfidence (see Note 3). With interval
estimation, assessments are made on the population dimension that has less salient scale limits
and the scale-end effects do not contribute to overconfidence in the same systematic manner.
At present, however, this explanation remains a speculation.

Observed over/underconfidence scores are presented inFig. 7with 95% confidence intervals.
Fig. 7 reveals the enormous format-dependence in data. When the participants are probed
for their confidence with the half-range format over/underconfidence is zero, but when the
same content is approached with interval estimation the overconfidence is enormous (.28).
The format-dependence effect is qualitatively reproduced by PROBEX and explained by the
response error included in the response stage of the model (seeJuslin et al., 1999).

5.2.5. Response times
Recall that when PROBEX is applied to the present task, it was assumed that the basic

stopping rule concerns a point estimate (Eq. (9)). This captures the intuition that the prime
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Fig. 7. The format-dependence effect observed in the data, where the over/underconfidence score is plotted for each
assessment format. The arrows indicate the corresponding predictions by PROBEX.

concern of the participants in this task is to get a clear conception of the population of each
presented German city. The analysis of the empirical response times revealed that there was little
systematic variation in the response times for different cities. It turned out that with parameters
fitted to the point estimates, decisions, and probability judgments, PROBEX reproduced this
pattern. PROBEX (and presumably the participants) have little knowledge and thus uniformly
retrieve a small number of exemplars.

This uniform pattern is illustrated inFig. 8 that presents median observed and median
predicted response times as a function of subjective probability. Predicted response times in
Fig. 8A are re-scaled by multiplication withm(RT)/m(N), wherem(RT) is the mean across the
six observed data points inFig. 8Aandm(N) is the corresponding six predictions (i.e., the mean
number of sampled exemplars). The same procedure was applied to the 11 values inFig. 8B.
This serves to re-scale the predictions into milliseconds.

When mean response time is plotted against probability category, both the participants
and PROBEX (with the current stopping rule) produce essentially flat functions (Fig. 8).
This is expected if the stopping rule is formulated in terms of the point estimate which
bears no obvious relation to subjective probability. One systematic discrepancy, however, is
that for half-range probability judgments, there is a tendency for the mean response times
to fall with increasing subjective probability. It appears that with this format the partici-
pants have turned to a stopping rule defined in terms of the two-alternative decision made
prior to the half-range probability judgment rather than the point estimate. A falling func-
tion is typical of stopping rules that are formulated in terms of a binary decision (i.e., as
presumed by most sequential sampling models, e.g.,Juslin & Olsson, 1997). This tendency
is weak, though, again presumably because the participants uniformly retrieve few exem-
plars. Although PROBEX accounts for some aspects of the data, future research should more
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Fig. 8. (A) Observed and predicted response times as a function of subjective probability category in the half-range
condition. (B) Observed and predicted response times as a function of subjective probability category in the full-range
condition. Because the distributions of response times are extremely skewed they are presented in terms of medians
and the .25 and the .75 percentiles.

carefully ascertain the stopping rules that best account for response times in generic knowledge
tasks.

5.3. Discussion

Overall, we conclude that PROBEX reproduces the basic patterns in data. Point estimates by
PROBEX coincide quite well with those by human participants, reproducing the same overall
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achievement but also many of the misconceptions. At the same time, PROBEX reproduces em-
pirical calibration curves and probability distributions with decent fidelity. Because PROBEX
considers the effects of a random response error in the response process (Juslin et al., 1997,
1999) it mimics the simultaneous over- and underconfidence bias with different probability
assessment formats. Finally, with parameters fitted to point estimates, decisions and probability
judgments (butnot to response time data), PROBEX reproduces also surprising aspects of the
response times (i.e., the flat functions inFig. 8).

The quantitative fit is impressive considering that: (a) PROBEX simulates the entire process
whereby generic knowledge is transformed into observable judgments. (b) The modelsimul-
taneouslypredicts point estimates, binary decisions, overt subjective probability assessments
with three different assessment formats, and response times. While a model may achieve
a fortuitous fit to a single dependent variable (Roberts & Pashler, 2000), the simultaneous
consideration of multiple dependent variables puts non-trivial constraints on any aspiring cog-
nitive mechanism. (c) Yet, the simulations in this article are based on a very crude model of
the database and the specific cue-structure used by the participants. It is significant that the
main departures between predictions and data occur for the solution probabilities (Fig. 5D),
the predictions that most clearly depend on knowledge of the specific cues that support the
judgments. (d) Four free parameters were fitted to 114 data points.

Moreover, PROBEX allows us to explain a number of more specific aspects of the process.
For example, why Swedes underestimate the probability that German cities have more than
180,000 inhabitants and why the response times are flat functions of probability category.
(Both are mainly explained by limited knowledge and reliance on the recognition principle.)
Although these peculiarities may appear uninterestingper se, the fact that PROBEX map these
and other idiosyncrasies that surface when Swedes approach the German city-population task
suggests that it makes serious contact with the processes that compute these judgments. The
poor fit of PROBEX when the recognition principle is disabled (r2 = .79 vs. .96) further
testifies to the importance of the recognition principle.

The best-fitting parameters indicate a fast-and-frugal version of PROBEX: the participants
infer properties of new objects by rapid retrieval of a small number (approximately 2) of highly
similar exemplars. PROBEX and the participants nevertheless make good estimates. In sum:
this section establishes that an exemplar model like PROBEX is a viable candidate theory
of the processes that make probabilistic inferences from generic knowledge. Quantitative fit
is, of course, a weak way of establishing the validity of a model and we need further strong
tests of parameter-free predictions, comparisons with other models, and applications to more
complex real-life like environments. Yet, tentatively it is both striking and encouraging that
the best-fitting parameters suggests a fast-and-frugal version.

6. General discussion

6.1. Summary

A plausible model of the cognitive processes that make inferences and compute “degrees of
belief” should have, at least, three properties.First, it should be consistent with, and preferably
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extend on, models with independent support in theCognitive Scienceliterature. PROBEX in-
herits its fundamental psychological principles from one of the most successful models—the
context model (Medin & Schaffer, 1978; Nosofsky, 1984). In the first section, we pointed out
that, if the output of the context model is interpreted as subjective probabilities it predicts
that subjective probabilities should be responsive solely to frequencies in some environments
and solely to similarity in others. Moreover, the model embodies a “hybrid-representation,”
similarity-graded probability, which provides a useful compromise between demands for rel-
evance and sample size, especially when knowledge is scarce.

In the second section, the context model was developed into an algorithm that computes
subjective probabilities from generic knowledge. PROBEX relies on similarity relations be-
tween retrieved rather than visually presented features, adds a sequential sampling mechanism,
and compute point estimates, decisions, subjective probabilities, and response times. By dis-
pensing both with assumptions of obligatory and complete storage, and exhaustive retrieval of
all exemplars, PROBEX attempts to implement an exemplar algorithm that better satisfies the
desiderata of bounded rationality (Simon, 1990). The inferences can thus be made by speeded
retrieval of a small number of similar exemplars.

The second property of a plausible model is addressed by research on ecological ratio-
nality (Gigerenzer & Goldstein, 1996; Gigerenzer et al., 1999). The algorithm should ex-
ploit structures of real environments, while making psychologically plausible demands on
time, knowledge, and computational resources. The discussion of frugality inGigerenzer
et al. (1999)was complemented by considerations of the demands for pre-computed knowl-
edge. In contrast to TTB and multiple linear regression, PROBEX is a lazy algorithm re-
quiring no pre-computed knowledge. The frugality of PROBEX is controlled by the number
of exemplars sampled to make a judgment. Simulations demonstrated that, when PROBEX
relies on all exemplars—as TTB and multiple regression always does, it dominates over its
competitors, in particular when knowledge is scarce. When PROBEX retrieves a few very
similar exemplars, it is particularly efficient, thereby implementing a fast-and-frugal exemplar
model.

The third important aspect of a cognitive model is that it validly describes the processes that
compute “degrees of belief” from generic knowledge. InJuslin et al. (2001), PROBEX proved
to be an accurate model of how people respond to similarity and frequency in a category learning
task. In the final section of this article, PROBEX was applied to the point estimates, decisions,
subjective probabilities, and response times generated by participants in a generic knowledge
task. The fit was satisfactory and the best-fitting parameters suggested that the participants
adapt to the demand for probabilistic inference from generic knowledge by retrieval of a few
similar exemplars. Responding with such a picky, similarity-graded probability is especially
efficient in states of limited knowledge.

Because a picky, similarity-graded probability comes close to a pure relative frequency
computation, this suggests some resemblance to models that emphasize relative frequency
(e.g.,Björkman, 1994; Gigerenzer et al., 1991; Juslin, 1994; Soll, 1996). In contrast to these
models, however, PROBEX does not pre-compute relative frequencies conditional on single
cues (e.g., the relative frequency of German cities with more than 180,000 inhabitants in the
subset of cities that have a university). PROBEX retrieves exemplars with large similarity to
the probe, computing a picky similarity-graded probability on the spot.
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These results reported in this article accumulate to the conclusion that PROBEX provides
a viable candidate theory of the processes that compute probabilistic inferences from generic
knowledge. In the remaining part of this section, we comment on the theoretical key-properties
of PROBEX and discuss its relations to extant models.

6.2. Fast and frugal exemplar models

One criticism of exemplar models is that they make too excessive storage demands (e.g.,
Barsalou et al., 1998; Nosofsky et al., 1994), in particular, models that presume obligatory
storage of each exposure to an object. Although such claims are notoriously difficult to eval-
uate without the help of some comprehensive theory of the costs involved in storage and
computation, we note that PROBEX is an exemplar model that makes no assumption of oblig-
atory storage. Moreover, the extent of exemplar retrieval is an empirical issue in terms of the
parameterk. Yet, PROBEX is an efficient tool for inference.

This suggests an important research program: to explore exemplar models that make de-
mands that are more modest on storage and retrieval. For example, can exemplar models that
presume storage of only a subset of objects, or retrieval of only a few exemplars, provide as
good fit to classification data as more demanding versions? What are the boundary conditions?
Successful application of fast-and-frugal exemplar models would increase their plausibility by
bringing them within the scope of bounded rationality (Simon, 1990).

6.3. Lazy algorithms

On several occasions in this article, we have stressed that one virtue of PROBEX is that it is
a lazy algorithm (Aha, 1997): it requires no pre-computed representations, like beta-weights
or cue validities. One way to capture this virtue is by saying that PROBEX obeys aprinciple
of minimal commitment. The best way to minimize storage demands and maximize flexibility
is by not committing to premature and complex computation of abstractions, but to postpone
computation to the time when the task is known. In an environment with unforeseen task
demands, this minimizes the need to compute and store abstractions.

Interestingly, this argument reverses the argument of “cognitive economy” routinely ad-
vanced in favor of abstractions, such as rules and prototypes (e.g.,Rosch, 1978; Smith &
Minda, 2000), that the storage of a simple rule or prototype obviates the need to store single
instances of a category. The contradiction is only apparent, however. When future task demands
are known, computation of abstractions minimizes, if not the computational demands, at least
the storage demands. When knowledge is for flexible and opportunistic use in novel situations,
the principle of minimal commitment is more appropriate. Arguably, in many real-life contexts,
the latter kind of “economy” is the more relevant one.

One solution to these contradictory demands is to rely on several knowledge systems that
each work along different principles, for example, one abstract, rule-based system and one
exemplar-based system. The accumulation of data that requires models incorporating multi-
ple levels of representation (e.g.,Ashby, Alfonso-Reese, Turken, & Waldon, 1998; Erickson
& Kruschke, 1998; Logan, 1988) suggests that this may indeed be the solution favored by
evolution.
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6.4. A mechanism for the recognition principle

The recognition principle states that if one but not the other city is recognized, one should
guess that the recognized city has a larger population. One consequence of this principle is
that accuracy may actually decrease with increasing knowledge (viz., “The less is more effect”
in Gigerenzer & Goldstein, 1996). In the simulations by Gigerenzer and Goldstein, accuracy
was higher when 50–75% of the cities were known than when most or all cities were known.
If all cities are known, the algorithms cannot benefit from the powerful recognition principle.
In a binary choice task, the principle can be modeled as a binary cue, but extension to other
judgment tasks requires a more general formulation.

PROBEX presumes no explicit check of a recognition cue (Gigerenzer & Goldstein, 1996):
the principleemergesas an integral aspect of the exemplar algorithm. Intuitively, this corre-
sponds to the experience that you recognize a city but little is known about it. Hence, it is
similar to other cities you know little about and these tend to have a small population. This
furnishes a cognitive mechanism and explicates the intuition that recognition is a “probability
cue” among others. Moreover, this mechanism implies that the principle is flexible, operating
only when recognition is related to the criterion, as for city populations. If the vaguely known
exemplars tend to havelargevalues, this mechanism elicits an inference that goes contrary to
the original recognition principle. That is, unrecognized objects will be expected to have large
criterion values. This suggests that the recognition principle need not be an explicit part of the
decision process, but a flexible and emergent property of exemplar architectures.

6.5. Relations to other models

PROBEX is obviously related to several models of perceptual classification, including, the
context model (Medin & Schaffer, 1978; Nosofsky, 1984) and EBRW (Nosofsky & Palmeri,
1997). In the exposition of PROBEX, we have repeatedly pointed out the heritage from these
and other, related models. However, none of these models applies to probabilistic inference from
generic knowledge or probability judgment and, therefore, they are not competing accounts
of the data presented in this article. Indeed, we have been unable to find extant models with
the same broad coverage of dependent variables that allow a similar in depth analysis of the
processing in a generic knowledge task. Nonetheless, a number of models address issues that
partially overlap with those of concern to PROBEX.

6.5.1. TTB
TTB can potentially account for the binary decisions and half-range probability judgments

on the assumption that the participants report the cue validities as their subjective probability
judgments (cf.Gigerenzer et al., 1991). Although, TTB originally applies to pair-comparisons,
the refinements needed to apply TTB to the data from the single-object tasks in the experiment
reported above should be manageable and straightforward.

However, TTB does not predict point-estimates, probability judgments with other formats,
or response times. Except for point estimates, this is true even if the scope is extended to the
entire “adaptive tool box” of heuristics envisioned byGigerenzer et al. (1999). Moreover, the
idea of an adaptive tool box containing a large number of disparate heuristics, each appropriate
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to a specific judgment format (e.g., TTB for pair comparisons, QUICKEST for point estimates),
suggests a fragmented view of the belief system. In contrast, PROBEX captures the intuition
that different judgment formats, like the ones in the experiment reported above, all revolve
around a common core of beliefs about the environment.

Although people sometimes rely on lexicographic decision rules in multi-attribute decision
tasks where the information is presented on an information board (Payne, Bettman, & Johnson,
1990; Tversky, 1969) and people have been observed to rely on TTB in specific circumstances
(Bröder, 2000), there are problematic aspects of data. A recent study (Jones, Juslin, Winman,
& Olsson, 2000) provided little support for TTB in a standard multiple-cue judgment tasks.
TTB cannot handle non-linearly separable categories (theEXOR-problem), but humans can
(Kruschke, 1992). This capacity requires consideration of more than a single cue, and is thus
troublesome for all algorithms of the TTB-family. Finally, it is hard to see how TTB accom-
modate several phenomena investigated with exemplar models, like the power-law speedup in
expertise (Logan, 1988; Nosofsky & Palmeri, 1997; Palmeri, 1997).

One possibility is to regard TTB and PROBEX as complementary, in the spirit of models with
multiple representation levels (Ashby et al., 1998; Erickson & Kruschke, 1998). Perhaps, TTB
is fast and frugal within the realm of a rule-based system constrained by working memory
capacity, while exemplar models employ fast and frugal retrieval processes adhering to the
principle of minimal commitment. This eclectic attitude non-withstanding, at present there is
little data demonstrating that people frequently rely on TTB.

6.5.2. Combined error model
The combined error model accounts for a number of phenomena in the probability judg-

ment literature, including the overconfidence phenomenon, the hard–easy effect, conservatism,
base-rate effects, expertise effects, and format dependence (Juslin & Olsson, 1999; Juslin et al.,
1997, 1999). The model extends on the ecological models of confidence (Gigerenzer et al.,
1991; Juslin, 1994) by modeling the stochastic components of the judgment process (Erev et al.,
1994). The model fits calibration curves and probability distributions, but not point estimates
and response times.

As mentioned above, the picky frequentist version of the context model (Eq. (3)) computes
the internal probabilities of the combined error model. This means that in essence the combined
error model is a special case of PROBEX (i.e., withk = 0, s = 0, andφ = 0, implying
exhaustive sampling, a picky frequentist, and no dampening). The difference is that, in the
combined error model, sampling error in experience and retrieval is modeled explicitly by
a binomial distribution, whereas this error is implicit in the application of PROBEX to the
incomplete knowledge matrix. This difference reflects that PROBEX is an explicit account of
how the subjective probabilities are computed from generic knowledge.

The sampling and response errors that provide the combined error model with its explanatory
power are thus integral aspects also of PROBEX. The fact that PROBEX inherits crucial
properties from the combined error model implies that it predicts additional phenomena not
discussed in this article, like conservatism and hard–easy effects. On the other hand, PROBEX
widens the scope of the combined error model by allowing degrees of belief to be affected
by similarity, and by providing point estimates and response times. Thus, the combined error
model should be able to account for the calibration curves and probability distributions to a
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degree that approximates the fit of PROBEX. However, it cannot account for the point estimates
and the response times, or for the role of similarity.

6.5.3. MINERVA-DM
A recent model that is similar to PROBEX is MINERVA-DM (Dougherty et al., 1999). Both

models apply exemplar (or instance) models to judgment. MINERVA-DM can fit decisions and
subjective probability judgments and should be able to account also for point estimates with
minor modifications. MINERVA-DM does not predict format dependence or response times,
but could be amended in suitable ways.

Although PROBEX and MINERVA-DM are similar in some respects, there are important
points of difference. First, in contrast to MINERVA-DM, PROBEX embodies a sequential
sampling of exemplars. The sequential sampling mechanism allows PROBEX to implement a
fast-and-frugal exemplar model that computes accurate judgments while making psycholog-
ically plausible demands on time, knowledge and computation (Gigerenzer et al., 1999). It
also means that PROBEX can fit response time distributions. Although a minor aspect of the
present article, the use of multiple dependent measures, including response times, may prove
crucial in the triangulation to identify the cognitive processes.

Second, whereas the exemplars in PROBEX refer to “crystallized” knowledge structures
corresponding to objects in the environment, MINERVA-DM presumes that each encounter
with an object leaves a unique memory trace. The exemplars in PROBEX do not rule out that the
knowledge structures themselves have been formed by a variety of cognitive processes, includ-
ing processes that involve abstraction across stimuli. Applying MINERVA-DM to a generic
knowledge task like the German city-population task is less than straightforward. For example,
one will have to make assumptions about the frequency of German cities to generate predic-
tions. This difference is theoretically very interesting and well worthy of investigation in future
research, but we note that there exists preliminary evidence in favor of the representational
scheme used by PROBEX (Barsalou et al., 1998).

The third difference is one of emphasis. MINERVA-DM is primarily applied to cognitive
biases in the judgment literature, routinely explained by similarity computations (i.e., the repre-
sentativeness heuristic). MINERVA-DM is applied to abstract and arbitrary sequences of vec-
tors with little relationship to real environments. This application accords with the content-blind
and abstract application in the memory and categorization literature. PROBEX, on the other
hand, takes ecological rationality as point of departure. Similarity-graded judgment is therefore
primarily viewed as an efficient tool for inference.

Finally, we depart from some of the claims byDougherty et al. (1999)concerning MINERVA-
DM. We do not agree that exemplar models like MINERVA-DM or PROBEX predicts base-rate
neglect in any natural way. The base-rate neglect predicted by MINERVA-DM arises from the
auxiliary assumption that people confuse posterior probabilities and likelihoods in Bayesian
problems, not from MINERVAper se. Adding this assumption to many other models should
likewise lead to prediction of base-rate neglect.

Likewise, although exemplar models respond to similarity, the conjunction fallacy is not a
natural consequence of an exemplar model. For example, inspection ofEq. (2)of the original
context model makes it evident that straightforward application of the model predicts judg-
ments that conform with the conjunction rule. Only if the extension of concepts (e.g., feminists,
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or bank-tellers) is misrepresented will an exemplar model like MINERVA-DM predict the con-
junction fallacy (e.g., by assuming that people presented with the probe “bank teller” retrieve
only bank tellers that are not feminists). Again, misrepresented extensions can be assumed by
a multitude of other models with similar results (and one may sense a threat of circularity with
the entire approach). In sum: several of the phenomena discussed byDougherty et al. (1999)
are not naturally implied by exemplar models, like the context model orMINERVA-2, but arise
from auxiliary assumptions.

6.6. Conclusions

In this article, we have proposed that the context model provides a useful way to elucidate
the role frequency and similarity in judgment. We have suggested that once that we take the
pre-computation assumed by different algorithms into account, a “lazy algorithm” like an
exemplar model may prove to be a more plausible candidate than acknowledged in previous
research (e.g.,Gigerenzer et al., 1999). Although we note that exemplar models are well
supported by previous research inCognitive Science, we stress that to fulfill the vision of a
boundedly rational exemplar model, the validity of a specific algorithm like PROBEX needs
to be validated by research that involves parameter-free predictions, comparisons between
models, and application to more complex real-life like environments.

Notes

1. The original context model for binary features (Medin & Schaffer, 1978) is a special
case of the generalized context model developed byNosofsky (1984, 1986)that also
handles continuous feature dimensions. The algorithm of PROBEX is actually based on
the generalized context model and is thus equally apt at processing continuous feature
dimensions. In the present article, however, we restrict ourselves to binary features.

2. This also means that PROBEX will disclose “The less is more effect” discussed by
Gigerenzer and Goldstein (1996). The effect is that as the system gains more knowledge
of the environment, implying a decreasing possibility to rely on the powerful recognition
principle (or cue), the accuracy of the inferences may actually decrease.

3. The point estimatec′(t̄) for continuous quantities could also be amended with a similar
kind of dampening representing the equivalent of a “prior distribution” for the value
of the variable, and with a similar random response error. We have chosen not to add
this complication to the point estimates for continuous variables for two reasons. The
assessment of the subjective probabilityP(t̄ ∈ A) is especially sensitive to the problem
of small sample sizes, and estimates without dampening become truly pathological at
very small sample sizes (e.g., always 1 or 0 at sample size 1). Second, because the
probability scale has salient end-points, the introduction of a random response error—
even if it is has zero expectation—leads to quite pervasive scale-end effects (see, e.g.,
Juslin et al., 2000). Thus, whereas it seems crucial to model these aspects in the case
of probability assessments, these components have less profound implications for point
estimates for continuous quantities. Nevertheless, such amendments could be considered
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also for the point estimates for continuous quantities in circumstances where it seems
appropriate and useful.

4. Ridge regression has the drawback of biasing the predictions towards the mean, and thus
lowers the predictive accuracy when the weights are calculated from many observations
without problems with correlated variables. We hand-picked an intermediate ridge con-
stant that increased accuracy with limited information (small training set) but did not
lower performance with much information (large training set).

5. Note that these results for the overall proportion correct are dependent on the specific
sampling of the dimension, training set size. In the simulations reported here, the smaller
training set sizes are more densely sampled than the larger training set sizes (for the larger
training set sizes, the function for proportion correct is virtually flat for most algorithms,
seeFig. 1A). Another sampling of the training set-size dimension, for example, a uniform
sampling, will thus produce a different proportion correct. However, because PROBEX
yields the highest proportion correct regardless of the training set size (seeFig. 1A), it
will always have the highest proportion correct.

6. We did not implement QUICKEST exactly asHertwig et al. (1999)did as we did not
use approximations to natural numbers which probably imply that our implementation
gives slightly better predictions.

7. The 114 data-points are not strictly independent, even if we control for the degrees
of freedom for each dependent variable. Specifically, two of the dependent variables,
solution probability and calibration, are related by their algebraic dependency on the
binary decisions elicited from the participants (i.e., on whether the decision was correct
or not). While this complicates a statistical analysis, it has little implication for the
interpretations made here. The ratio of the number of observations to the number of
fitted parameters is still satisfactory.

8. Theoverestimationof the probability that the presented statement is true should be
distinguished from theoverconfidence biasthat may be observed with half-range as-
sessments. The former bias represents an overall tendency to believe that the presented
statements are true, where as the overconfidence bias refers to an overestimation of one’s
own ability to select the correct answer.
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Appendix A. The procedure used to fit PROBEX to data

The four parameters were varied in a grid search. The total number of parameter sets was
N = Ns×Nk×Nφ×Nσ 2. One simulation was made for each parameter set, and theRMSDwas
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calculated between the simulated results and the empirical data for all eight dependent variables
(four each in the half-range and full-range conditions, respectively). A matrixXij was filled
with these RMSD-values, where each row (indexi) corresponded to the eight RMSD-values
from one parameter set, and each column (indexj) was allN RMSD-values for one depen-
dent variable. In order to decide which parameter set that gave the best fit to all dependent
variables it was necessary to somehow normalize each column to make them comparable. It
is not possible to sum the RMSD in a row and pick the row/parameter set with the lowest
RMSD, because the city estimates would overshadow all the other since they are in the mag-
nitude of hundreds of thousands. Thus, each column/variable was normalized by the smallest
value in that column. This makes some values in the matrix 1, but most of them slightly
greater.

Yi =
∑8

i=1(Xij/min(Xj ))

8
, i ∈ [1, N ] (A.1)

Eq. (A.1)gives a measureYi for each parameter set and the parameter set with the smallest
measure was selected as the best-fitting parameter set.

In order to illustrate that this method is reasonable consider the special case where the
minimum found for each variable is in the same row. The normalizing procedure would then
be unnecessary because it is obvious that this parameter-set provides the best fit. If this row
is normalized and divided by 8, as prescribed inEq. (A.1), the measureYi would be 1, the
lowest possible value ofYi . This demonstrates that the measureYi indicates of how well each
parameter set minimizes the error for each dependent variable.

Because the simulations of PROBEX have random components, one grid search cannot
find the “best” minimum. Therefore, we repeated our simulations both to narrow the range of
parameters tested and to find stable parameter values.
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