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Abstract

Periods of relatively stable, rule-like behavior alternated with short transition periods characterize
cognitive development on reasoning tasks like the balance scale task. Each transition gives rise to an
improvement in behavior, until a phase is reached in which performance is flawless or improvement
is not worthwhile given the necessary extra effort. Several computational models have been developed
to capture the developmental phenomena associated with the balance scale task. These models, which
originate from different computational traditions, explain the main phenomena of development. Recently,
empirical phenomena have been reported that these models cannot easily accommodate. We propose a
computational model that is implemented in ACT-R and that is based on the evaluation of success of
applied knowledge, combined with a mechanism to construct new knowledge by searching for differences
between the left- and right-hand sides of presented balance scale problems. This model accounts for the
main empirical phenomena as well as for the recently reported empirical phenomena such as learning
without feedback.
© 2002 Cognitive Science Society, Inc. All rights reserved.
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Cognitive development in many domains is conceptualized as a progression through a series
of increasingly complex and increasingly accurate task-specific stable phases. Behavior on
the balance scale task, a task that is related to proportional reasoning, displays this type of
developmental progression(Chlestos, De Lisi, Turner, & McGillicuddy-De Lisi, 1989; Jansen
& Van der Maas, in press; Siegler, 1981). Periods of relatively stable performance (“phases”)
alternate with short periods of unstable performance during which a new phase is attained. In
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a balance scale task, a child is asked to predict the direction of movement of a balance scale.
Pegs are situated at equal distances from each other and the fulcrum. Identical weights are
placed on one of the pegs at both sides of the fulcrum. The balance will tip to either side,
or remain in balance, depending on the number and the positions of the weights. This task is
used to investigate the strategies that children employ in solving this task, the effect of training
on the children’s behavior, and the transition from one strategy to the next (e.g., seeSiegler,
1976, 1981; Siegler & Chen, 1998). Siegler distinguished six types of balance scale items,1

which he used to categorize behavior in terms of the inferred strategies. The six types are
divided into three simple types and three so-called conflict-types. The simple item types are:
(a) Balance itemswith equal numbers of weights at each side and equidistant to the fulcrum;
(b) Weight itemswith unequal numbers of weights at each side, equidistant from the fulcrum;
and (c)Distance itemswith an equal number of weights at each side, but at different distances
from the fulcrum. These item types are called simple item types as the weight and distance
information do not conflict. The three conflict item types are characterized by both different
numbers of weights and different distances from the fulcrum. Moreover, the answers based on
each dimension conflict: if the weight dimension predicts the answer to be “the balance scale
tips to the left side”, the distance predicts the opposite. Depending on the differences between
the weights and distances, the scale tilts to the side with the largest number of weights or to
the side where the distance to the fulcrum is greatest. In (d)Conflict Weight items, the balance
scale tilts to the side with the larger number of weights. In (e)Conflict Distance items, the
scale tilts to the side where the distance to the fulcrum is greater. In (f)Conflict Balance items,
the effects of the two dimensions compensate: the scale remains in balance. The behavior of
children on the balance scale task has been studied extensively by comparing their performance
on the different item types. These studies have established repeatedly a number of empirical
phenomena which will be discussed in the next section.

Identifying phenomena does not provide an account of the mechanisms underlying behavior.
As argued by many authors (e.g.,Boden, 1979; Anderson, 1987; Siegler, 1989), one needs to
understand the mechanisms that cause the changes in behavior to obtain a causal explanation
of development. In attempts to explain these mechanisms in the case of the balance scale
task, several computational models have been proposed. These models, which originate from
different computational traditions, explain the main phenomena of development. Recently, new
empirical phenomena have been reported which these models cannot easily accommodate.

This paper consists of three parts. We first describe the main empirical phenomena associated
with development on the balance scale task. Second, we discuss existing computational models
of the balance scale task. Finally, we present a computational model that does account for the
major empirical phenomena and we discuss its explanatory value.

1. Empirical phenomena and criteria

In this section, we discuss the major empirical phenomena (EP) associated with the balance
scale task. On the basis of these phenomena, we formulate four sets of empirical criteria. Only
if a computational model satisfies these four criteria, it can be considered a model of the full
range of behavior associated with the balance scale task.
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1.1. Empirical phenomena

1.1.1. EP1: Stable phases and transitions
The behavior of children on the balance scale task is often classified according to their

inferred use of a small number of “Rules”.2 The notion of Rule use is based on the observa-
tion of homogeneous behavior on balance scale items of a particular type. This “consistency
criterion”(Reese, 1989)is often cited as evidence for rule use. Within the balance scale domain,
the consistency criterion is operationalized bySiegler’s (1981)rule assessment methodology.
Using this methodology, children’s responses are compared with the responses implied by
the various Rules. Their behavior is classified according to the closest match between their
responses and those associated with a given Rule.Jansen and Van der Maas (1997)improved
the rule assessment methodology by applying latent class analysis. Latent class analysis3 is a
statistical technique used to determine the number and kind of unobservable classes of behavior
which give rise to observed responses on balance scale items. Using this technique,Jansen and
Van der Maas (1997, 2002)provided a statistically sound foundation ofSiegler’s (1976, 1981)
earlier results.

The overall picture that emerges from these studies is that children adopt progressively
more powerful Rules during development, which results in increasingly better performance.
Between transitions, children display stable and consistent behavior on the balance scale task.
During the transition from one Rule to the next, performance is more erratic as some items of
a particular type are already answered correctly, whereas others are still answered according
to the earlier Rule yielding incorrect answers. The exact mechanism of transition may differ
from Rule to Rule.

1.1.2. EP2: The Rules
Siegler (1976, 1981)has identified four Rules that characterize children’s behavior during

different phases. These Rules are shown inFig. 1. Rule I involves the following steps: consider
the number of weights on each side: if equal, predict that the balance scale will remain level,
if unequal, predict that the balance scale will tip to the side with greater weight. Like Rule I,
Rule II states that the scale will tip to the side with the greater number of weights. However, if
the weights are equal, the distance dimension is taken into account. Rule III states that both the
weight and distance dimension are taken into account. If one side has greater weight and the
other greater distance, the child guesses. (Described as “Muddle Through” inSiegler, 1976.)
Rule IV states that both dimensions are considered and if the dimensions conflict (as in the
conflict item types), the torque is computed by multiplication of the weights and distances.
Note that these Rules have multiple conditional responses, and are therefore more complex
than “standard” IF–THEN rules.

The unsystematic behaviorbeforeRule I is often described as Rule 0 or pre-Rule I. The first
three Rules (Rule I–Rule III) are comparable because they consist of simple steps consisting
only of comparisons. Rule IV includes an additional step that involves multiplication. Rule I
is completely unidimensional, as only the weights are taken into account. Rule II is neither
completely unidimensional nor multidimensional, as it can be applied by switching attention
from one dimension to another. Only Rule III and Rule IV require full multidimensional
reasoning as both weight and distance values are considered simultaneously(Siegler, 1996).
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Fig. 1. Rules that categorize behavior as identified bySiegler (1981).
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The period in which a child uses a particular Rule is referred to as a Phase (e.g., Rule I is used
in Phase I).

After Siegler’s initial study, these results have been replicated in numerous other studies.
Besides confirmation of the originally presented Rules, some new Rules were proposed. How-
ever, a number of these Rules are hard to identify empirically as these predict the same perfor-
mance as other Rules (e.g., seeJansen & Van der Maas, in press, for a latent class based analysis
and categorization of Rules used by children). An exception is the Addition Rule(Ferretti,
Butterfield, Cah, & Kerkman, 1985; Normandeau, Larivee, Roulin, & Longeot, 1989). The
Addition Rule states that the answer is based on the addition of weight and distance values
when presented with conflict items.

It is sometimes doubted whether subjects classified as Rule IV use multiplication rather
than some other procedure, such as perceptual approximation or problem–answer mappings.
However, in studies in which the rule assessment classification is studied by asking for verbal
explanations, most subjects classified as Rule IV refer to multiplication in their explanations
(Siegler, 1976, 1981). Another issue with regard to Rule IV is whether Rule IV can be learned
without explicit instruction which would have serious implications for balance scale models.
As advanced subjects new to the balance scale task regularly use Rule IV to solve the problems,
the Rule can be learned without explicit balance scale task instruction. Of course, it is possible
that they received explicit instruction in related domains. But irrespective of how the Rule is
learned, a significant group of subjects master Rule IV, and so should complete balance scale
models do.

1.1.3. EP3: Transition phenomena without feedback
In a recent study,Jansen and Van der Maas (2001)describe phenomena associated with the

transition from Rule I to Rule II. Jansen and Van der Maas presented a sequence of distance
items to Phase I children. The weights of the first item were situated on the first peg left from
the fulcrum, and on the second peg right from the fulcrum. During the first part of the sequence,
the distance between the fulcrum and the weights was increased by moving the weights on the
right side one peg outward per presentation. During the second part of the sequence, which
started once the weights had reached the most extreme peg, the distance was decreased again by
moving the weights back toward the fulcrum. This way, the difference between the left and right
distance values first increased and then decreased. The choice to manipulate distance was based
on research that suggests that theavailability or encodingof the distance dimension influences
performance on the balance scale task (Siegler, 1976; Siegler & Chen, 1998, Exp. 3). As in most
balance scale studies, the children werenotgiven any feedback concerning their responses. Of
the 314 children tested (age range: 6–10 years), 27% displayed behavior that was not consistent
with Rule I over the sequence of difference distance manipulations. Three interesting deviations
from Rule I were found.Fig. 2 illustrates these patterns and the associated responses.

Four percent of the children displayed a change from Rule I to Rule II behavior and from Rule
II to Rule I at exactly the same point in the sequence. This pattern, which is shown inFig. 2a, is
consistent with the so-called “Maxwell convention” (seeJansen & Van der Maas, 2001). Three
percent of the children displayed a switch at adifferentpoint in the sequence depending on
whether the difference in distances was increasing or decreasing. This pattern, which is shown
in Fig. 2b, is consistent with the so-called “delay convention”. Nine percent of the children
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Fig. 2. Three transition patterns,x-axis denotes the difference in distances left and right of the fulcrum, they-axis
denotes the used Rule. Note that the actual distance difference values are not constrained, for example, the Maxwell
convention can also occur at distance difference four.

displayed a sudden jump from Rule I to Rule II as the distance difference was increased, but
did not return to Rule I as the distance difference was decreased. This so-called “sudden-jump”
response pattern is shown inFig. 2c. Besides these three groups, eleven percent of the children
displayed behavior that deviated from Rule I, but that was not classifiable. Regrettably, such
detailed information is not available for other transitions;Jansen and Van der Maas (2001)only
studied the transition from Rule I to Rule II. Note that these results do not necessarily imply
that manipulating the distance dimension is the only or even the most important way to trigger
transitions. However, the results do show that transitions can be induced without feedback. In
general, this behavior is comparable to learning without feedback which has also been posited
in areas as language learning(Pinker, 1984; Taatgen & Anderson, 2002)and implicit learning
(e.g.,Cleeremans & McClelland, 1991).

1.1.4. EP4: Torque Difference Effect
A similar but less specific effect is the “Torque Difference Effect”. This effect refers to

the finding(Ferretti & Butterfield, 1992; Ferretti et al., 1985)that within item types, items
with a large difference in torque are more likely to be answered in a manner consistent with a
more advanced Rule than items with a smaller torque difference. This suggests heterogeneous
behavior within item types. Such heterogeneity challenges the notion of Rules and the rule
assessment method as proposed by Siegler. However, reanalysis of the data(Jansen & Van
der Maas, 1997)shows that the Torque Difference Effect only occurs with items with extreme
torque differences. Therefore, it is concluded that the children’s behavior is homogeneous for
moderate torque difference levels and that a torque difference effect is limited to large torque
differences.

1.2. Empirical criteria

Ideally, these behavioral phenomena should be reproduced by models of development on
the balance scale. Therefore, we translate these phenomena into four sets of empirical criteria
for models of balance scale behavior.
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1.2.1. EC1: Rule-like behavior
The behavior of the model should be classifiable into Rules. This classification can be

conducted by latent class analysis or by inspecting the models’ implementation directly.4 As
different levels of rule-like behavior implies transitions, the model must explain transitions
from one Rule to another.

1.2.2. EC2: Rule sets
A complete model of balance scale behavior should include the four Rules as identified by

Siegler (1976), and the later identified Addition Rule(Normandeau et al., 1989). The Rules
should appear in a fixed order.

1.2.3. EC3: Transition patterns without feedback
The model should explain how transitions occur on series of items with increasing and

decreasing distance differencesin the absence of feedback. In particular, the model should
give rise to the three transition patterns as presented inFig. 2. This criterion only applies to
the transition from Rule I to Rule II as detailed results concerning the transitions between the
other Rules are not available.

1.2.4. EC4: Torque Difference Effect for large torque differences
A model should reproduce the Torque Difference Effect for large torque differences but not

for small difference values.

2. Computational models

Several computational models have been proposed to explain development on the balance
scale. We discuss models of balance scale behavior based on production rules, decision trees,
and neural network models. Without entering into the discussion on the psychological validity
of these architectures, the models are discussed in terms of the degree to which the empirical
criteria are satisfied.

Obviously, the models should have access to some form of feedback. Without feedback, none
of the models would be able to show development through the phases. However, in accordance
with EC3, the models should be able to explain how local developmental transitions can take
place without feedback.

2.1. Production rule models

We discuss two production rule models.5 The first computational model of balance scale
behavior isKlahr and Siegler’s (1978)production rule model. They showed that different sets
of static production rules were able to capture the observed Rules. The model did not specify a
transition mechanism and it therefore failed to meet the first, most important empirical criterion
(EC1).

Sage and Langley(Langley, 1987; Sage & Langley, 1983)presented the first computational
model that actually shows development from Rule I to Rule III. As shown inFig. 1, the central
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idea is that Rule II adds extra conditions to Rule I, as does Rule III to Rule II. Their model starts
with a set of production rules that produce random answers. The model learns by discrimination:
if the model produces an incorrect response to an item, a new production rule is created based
on an analysis of the differences between this item and the last item which the production rule
solved correctly. Performance is kept stable for some time by a strength parameter. A new
production rule is created when no production rule is available with a strength level above a
certain threshold. This model shows rule-like behavior and transitions (EC1) from Rule I to
Rule III. The model does not acquire Rule IV, because this Rule cannot be constructed as the
concept of multiplication is not available to the model. The same holds for the Addition Rule.
However, incorporation of multiplication and addition mechanisms will probably result in the
construction of the appropriate Rules.

The discrimination method used in this model often gives rise to production rules that result
in behavior not found in empirical data. The model therefore satisfies EC2 only partially. It
is unclear how this model may incorporate the non-feedback related phenomena (EC3). The
model only checks whether weights and distances differ and does not use the actual values in
conditions of production rules. Therefore, it is not sensitive to differences within item types
and fails to satisfy EC4.

The ACT-R architecture and the model that we present below share a number of features
with this production rule model. ACT-R incorporates the idea of usefulness parameters for
production rules, but in a more sophisticated way. As in the models of Sage and Langley, our
model also constructs new production rules. However, as discussed below, the new production
rules are based on knowledge available to the ACT-R model, instead of on purely architectural
mechanisms. In theLangley (1987)model, new production rules are constructed by adding
conditions to existing rules. In the ACT-R model, new production rules are created that operate
in cooperation with existing rules.

2.2. Decision tree model

Schmidt and Ling (1996)presented a model based on decision tree learning. This model
acquires behavior on the balance scale by constructing decision trees. At the top-level of the
tree is the most predictive test, one branch below are the next most predictive tests given the
value on the top level test, etc. For example, a decision tree for Rule II (Schmidt & Ling, 1996,
p. 217) starts with “Are weights and distances equal?” If both are equal, the model predicts
that the balance scale will remain in “balance”, otherwise the next test is “Which side has the
most weights?” During the construction of the tree, new conditions are added until the tree
reaches a pre-specified “error tolerance” threshold. The algorithm used by Schmidt and Ling
uses a complete training set when constructing the tree. However, as pointed out by the authors,
algorithms exists that produce similar trees by presenting training items incrementally.

The decision tree model is similar to the production rule models of Sage and Langley. A path
from the top-level of the tree to an end-point can be viewed as a rule. The concepts from which
the tests are constructed are binary concepts representing (a) the side with the larger number
of weights, (b) the side with the larger distance and (c) a concept that represents whether
the weights and distances for both sides are equal. Besides these concepts, which were also
available in the above discussed models of Sage and Langley, the decision tree model also has
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access to concepts expressing the (d) numerical difference in weights and the (e) numerical
difference in distances between both sides.

The model satisfies EC1 as it acquires trees that correspond to the Rules. Moreover, the tran-
sitions from one Rule to another are by definition sudden. As the model learns the first three
Rules in the right order, it partially adheres to EC2. However, the concepts of addition and mul-
tiplication are not included in the model. Therefore, the model is not able to learn the Addition
Rule and Rule IV is approximated by specific item-to-answer mappings. If multiplication were
included in the model, it is unlikely that the other strategies would remain available. It is unclear
whether this model can incorporate the non-feedback related phenomena (EC3). With respect
to EC4, different Rules are constructed for the values of the numerical difference concepts
(d and e), hereby reproducing the Torque Difference Effect. However, the Torque Difference
Effect is produced consistently, that is, both for smaller and larger torque difference values.

2.3. Connectionist models

McClelland (1989, 1995)presented a connectionist model of balance scale behavior that
learns by back-propagation of feedback. The network consists of two output nodes representing
the predicted answer and ten input nodes, five for each side. Only one of the input nodes per side
receives activation. The distance dimension determines which of the input units is activated,
and the weight dimension determines the amount of activation. The input and output nodes
are connected by separate hidden layers for the distance and weight dimensions. To explain
the order of the Rules (i.e., the use of the weight dimension before the distance dimension),
McClelland assumes that initially weight items occur more frequently than distance items.

The first empirical criterion poses a problem for this model. Using Siegler’s rule assessment
methodology, McClelland claimed a successful fit to human data. However, reanalysis of the
model’s behavior using latent class analysis showed that the behavior of the model cannot be
described by a set of distinct rules(Jansen & Van der Maas, 1997). The model therefore fails
to show homogeneity within item types. Furthermore,Raijmakers, Van Koten, and Molenaar
(1996)showed that the model fails to show qualitative transitions between the Rules.

With respect to EC2, the model is not able to learn stable Rule behavior as it sometimes
regresses after a period of stable behavior. Moreover, Rule IV is never learned. Because the
model is only able to learn by feedback-dependent back-propagation, it fails the no-feedback
criterion (EC3). With respect to EC4, the model does show the Torque Difference Effect
(McClelland, 1995).

Shultz and his co-workers(Shultz & Schmidt, 1991; Shultz, Mareschal, & Schmidt, 1994;
Schmidt, Buckingham, & Mareschal, 1995)modeled balance scale behavior with cascade-
correlation networks. The central tenet of cascade-correlation is the introduction of new hidden
nodes into the model if the back-propagation-like learning mechanism does not reduce the error
between predictions and feedback fast enough. Here we will discuss the model as presented
in Shultz et al. (1995). This model has five input units for each side of the balance scale and
two output units. The distance dimension determines which of the input units is activated,
and the weight dimension determines the amount of activation. Initially, as in McClelland’s
model, weight items are over-represented in the training problems to accommodate the initial
preference for weight.
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Table 1
Overview of empirical criteria per model

Empirical criteria Model type

Production rules Decision trees
SL’96

Neural networks

KS’78 SL’87 McC’95 S’95

EC1: Rule-like behavior − � � − −
EC2: Rule sets � + + − +
EC3: Transition patterns without feedback − − − −
EC4: Torque Difference Effect − + � �

Note.�: criterion fully satisfied,+: criterion partly satisfied,−: criterion not satisfied. Note that the evaluations
are based on the descriptions of the models as available in literature. This doesnotmean that models with “+” and
“−” evaluations cannot be extended to match the criteria better. KS’78:Klahr and Siegler (1978), SL’87: Sage and
Langley (1983), SL’96:Schmidt and Ling (1996), McC’95:McClelland (1995), S’95:Shultz et al. (1995). See text
for a complete list of references.

According to analyses with the rule assessment methodology,6 the behavior over time of
the cascade correlation network follows the Rules. However, because the learning mechanism
of the cascade correlation network is comparable to that of McClelland’s model, it is likely
that the transitions are better described bygradualadaptation than by sudden transitions. This
impression of gradual adaptation is reinforced by the remark made by Shultz (1994, p. 81)
that: “The cascade correlation model suggests that balance scale [. . . ] transitions are soft and
tentative rather than abrupt and definitive”. The threshold for adding new hidden nodes plays a
role in how long performance remains stable. This model therefore occupies a position between
the production rule model and the back-propagation model with respect to the generation of
Rules (EC1). This model learns all four Rules in the correct order (EC2). However, as no torque
is calculated, the model can only approximate Rule IV behavior.Shultz et al. (1994)did not
attempt to incorporate the Addition Rule in their model. Like McClelland’s model, it fails the
no-feedback criterion (EC3), because the model is only able to learn by feedback-dependent
back-propagation. The model does show the Torque Difference Effect (EC4).

2.4. Conclusions

Table 1summarizes the empirical criteria that each model satisfies. Although each model
provides an interesting perspective on the process of balance scale development, none is able
to model all empirical data. The most prominent problem is that none of the models can explain
learning without feedback. In the next section we present an account of behavior on the balance
scale task that satisfies all four empirical criteria. This model is based on the ACT-R cognitive
architecture.

3. An ACT-R model of balance scale behavior

ACT-R (Anderson, 1990; Anderson & Lebiere, 1998)is a hybrid cognitive architecture in
which the use of symbolic knowledge is mediated by associated quantitative values.7 In con-
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structing an ACT-R model of balance scale behavior, we distinguish between three aspects of
the model: mechanisms, task-specific concepts, and capacity constraints. Most important are
the mechanisms. The mechanisms involve several ACT-R-specific processes, which will be
explained in detail below. However, the key idea is a very general strategy, which underpins
balance scale behavior in all phases. This strategy is: “solve balance scale items by searching
for differences between the left and right side of the balance scale”. The performance of this
strategy is constrained by the presence or absence of task-specific concepts and by the available
capacity. With respect to the task-specific concepts, the availability of a particular concept or
property determines whether it can be used in the reasoning process. Examples are the facts
that multiplication is not available initially, and that children notice the weights earlier than the
distances. The capacity constraint, expressed as uni- versus multidimensional reasoning, influ-
ences the number of concepts (i.e., weight and distance) that can be incorporated simultaneously
in the general strategy. Initially, children can only accommodate a difference on one dimension,
which constrains the general strategy to “search for a difference between the left and right side
of the balance scale”. We will demonstrate how the interplay between these three aspects of the
model explains the four empirical phenomena. First, we give an overview of the properties of the
ACT-R architecture that are important in the present model. Then, we discuss the task-specific
concepts and the capacity constraints. Finally, we present simulations of the developmental
process including all phase transitions, the transition patterns and the Torque Difference Effect.

3.1. Key structures and mechanisms of the ACT-R architecture

3.1.1. Chunks& production rules
ACT-R stores knowledge in two types of memory. Declarative memory contains chunks

that represent descriptive knowledge, whereas procedural memory contains production rules
that represent procedural knowledge in the form of IF–THEN actions.

Each chunk is of a specific type that defines its function in the model. At each point in time,
one of the chunks in the model denotes the goal of current processing.

At each processing step, ACT-R examines all production rules to test which production rules
match the current goal. A production rule is considered to match if the conditions of that pro-
duction are satisfied by the active goal. Besides conditions on the active goal, a production rule
can also have conditions on the availability of declarative information. To retrieve information
from declarative memory, a production rule initiates a retrieval request. This request specifies
the conditions that determine the type of information that is required. Subsequent production
rules can test for the availability of that knowledge, that is, they can test whether the given
conditions returned a retrievable chunk. In addition to initiating a retrieval, the THEN-side of
production rules can change the current focus to a new goal, modify the current goal or initiate
other external actions.

3.1.2. Activation& utility
Instances of both declarative and procedural knowledge have associated quantitative param-

eters that express their usefulness. If the chunk or production rule has proven to be successful
in achieving the goal, the associated parameter is increased in value. As a consequence, the
chunk or production rule will be used more often, and vice versa. For declarative memory
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chunks, this quantitative parameter is represented as the activation level of the chunk. The
activation level depends on a base-level activation and on activation sources originating in the
model’s context. The base-level activation (B) is determined by the number and recency of
past retrievals of that chunk, i.e.,

B = ln




n∑
j=1

t−d
j


 .

The summation is over all previous retrievals (n) of this chunk, withtj being the time in seconds
between retrievalj and present, andd being the decay rate (by default fixed at 0.5). The default
ACT-R context activation, called associative activation does not play an important role in the
model presented here. However, in the second set of simulations presented in this paper, a differ-
ent type of context activation is introduced that reflects perceptual saliency. When a model initi-
ates a retrieval request, and multiple chunks with activation levels above the retrieval threshold
satisfy the conditions of that retrieval request, the chunk with the highest activation is retrieved.

For production rules, the main parameter is the expected utility. The utility of production
rules is determined by a combination of the proportion of successful completions of goals
and the costs associated with that production rule: Utility= U = P × G − C + σ. In this
equation,P is the proportion of successful applications of the production rule. This proportion
is multiplied by a constantG (20, by default).C reflects the cost associated with the execution
of the production rule, expressed in units of time. The last variable in the equation,σ, represents
normally distributed noise that may optionally be added to the utility.

The value of the parametersP andC depend on the performance of the current production
rule and the performance of the production rules that follow the current one. With respect
to theP parameter, a production rule is considered to be executed successfully if the goal to
which it was applied is tagged as successfully solved. The value of theC parameter depends
on both the costs of the current production rule and the costs of following production rules
used for the same goal. Each production rule has a fixed cost of 50 ms. Besides these fixed
costs, a production rule might take more time if it has to wait for a retrieval from declarative
memory, or if it involves perceptual or motor actions. During the run of a model, theP and
C parameters get updated on the basis of new experiences. For example, if a large number of
goals are solved successfully,P will increase as the overall proportion of correctly answered
problems increases. Similarly, if the costs associated with solving a problem decreases (e.g.,
because of acquiring a more efficient strategy), theC parameter will decrease.

As with chunks, if more than one production rule satisfies the current constraints, the produc-
tion rule with the highest utility value is selected. In the simulations reported below, normally
distributed noise was added to the utility. This results in the model occasionally trying al-
ternative production rules. If an alternative production rule performs better than the original
production rule, this is reflected in its utility parameters. Eventually, this alternative production
rule will supersede the original.

3.1.3. Learning& production composition
ACT-R models are able to expand their knowledge by adding new chunks and production

rules to their memories. The source of new declarative knowledge can be internal or external.
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The internal source of new chunks are production rules. New chunks are added if the production
rule modifies the goal-chunk to which it was matched, or if it constructs a new chunk in its
THEN-side. An example of an external source of new chunks is perception.

A recent addition8 to ACT-R (ACT-R v5.0, 2002b, production rule learning;Taatgen,
2000; Taatgen & Anderson, 2002) is production composition. Production composition
creates new production rules by joining two production rules that occur in succession into
one single rule. This process eliminates intermediate retrievals from declarative memory. For
example, assume that two production rules are executed in succession. If the first produc-
tion rule initiates a retrieval request and the second production rule processes the retrieved
chunk by storing information from that chunk in the current goal, production composition
constructs a new production rule that modifies the goal chunk in the same fashion as be-
fore, but without requiring a retrieval. In other words, production composition specializes a
general procedure to solve a problem into a problem-specific procedure by eliminating the
retrieval.

This composition mechanism also applies to learning new behavior from declarative des-
criptions of the involved actions. These representations (declarative actions) are available as
chunks (cf.,Anderson, 2000), for example as the results of observing others perform actions,
or as the result of explicit instruction. The declarative actions can be matched and executed
by “interpretive production rules”. These production rules retrieve the declarative actions and
modify the goal based on the contents of the declarative actions. Because of these modifications,
other production rules now match the goal, giving rise to new behavior. By means of this
process of alternating execution of interpreting and “normal” production rules, new sequences
of behavior emerge on the basis of already available production rules.

The utilities of newly composed production rules are inherited from the parent rules. How-
ever, as the composed production rule often removed the necessity of a retrieval and combined
two production rules into one, the costs associated with the new production rule are lower than
the old combination of production rules. That is, the costs of the newly composed production
rules does not involve the costs associated with extra retrievals (a variable amount of time)and
the costs of executing the second production rule (a fixed 50 ms). As the success rate of the
newly composed production rule is equal to the success rate of the non-composed production
rules, the difference in costs will eventually favor the composed production rules.9

3.2. Explanation of development in the model

Fig. 3 shows three main factors underlying the behavior and development of the ACT-R
model. The first factor, the mechanisms, is a combination of the ACT-R architecture and
task-general knowledge. ACT-R provides the basis for behavior (e.g., the execution of pro-
duction rules, the selection of chunks) and development (e.g., composition of new production
rules, updating of the quantitative parameters that express the utility of production rules). The
task-independent part of the mechanisms contains the interpretive production rules and the
declarative representations of actions. These actions represent the strategy “answer a balance
scale problem by searching for differences”.

However, this does not specify the property to which the model should attend. This is
specified by the second factor: the task-specific concepts. The availability of a concept is
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Fig. 3. Availability of components of the model over time.

mediated by the activation of the declarative chunk representing that concept. If this chunk is
above the retrieval threshold, the related concept can be incorporated in the decision process.
We make two, rather uncontroversial, assumptions about the second factor. The first is based
on the empirical observation(Siegler, 1976; Siegler & Chen, 1998)that children initially
prefer weight above distance. We simply assume an initially higher activation for weight than
distance10 on the basis of the encoding studies ofSiegler (1976). The second assumption states
that the concepts of addition and multiplication appear later in development. The exact timing
of the appearance is of less importance since the emergence of the Addition Rule and Rule IV
also depend on the capacity constraints.

Capacity constraints form the third factor. In many developmental theories, notably the
Neo-Piagetian theories, the increase in capacity plays a central role in the development of
domain-specific strategies(Case, 1985; Pascual-Leone, 1970). Although it has proven to be
difficult to quantify the precise effects of cognitive capacity(Chapman, 1990), it is quite
clear that its increase plays an important role in the transition from uni- to multidimensional
thinking(Siegler, 1996). It is this specific consequence of the capacity constraint that we use to
explain the generalization of the “search for differences” strategy. Initially, capacity limitations
constrain the strategy to “search for a difference,” and only later is the strategy extended to
“search for more than one difference”.

The development of performance depends on these three factors. The mechanisms explain
how development occurs, the other two factors explain the order and timing of development.

From its initialization, the model has access to declarative knowledge about how “forced
choice problems” (e.g., answer either “tip to left”, “tip to right” or “remain in balance”) are to be
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solved. This declarative knowledge represents the strategy that, in order to solve a force-choice
problem, a property has to be found with respect to which the alternatives differ. In the context of
the balance scale this means that it should look for a difference between the left- and right-hand
side of the balance scale. If a difference is found based on the interpretation of the declarative
actions, the model uses this difference to determine an answer. However, if no difference is
found, the model searches for a new property.

Initially, neither the weight nor the distance property is encoded because the activation
levels of the chunks representing the property are below threshold. Therefore, the model gen-
erates an answer by guessing. After each guess, feedback is given about the correctness of
the given answer. As the proportion of correct answers based on guessing is low, the pro-
duction rules representing this strategy have a low utility. Therefore, as soon as the weight
property becomes available, the model will start to incorporate this concept in the decision
process, yielding Rule I behavior. As this increases the proportion of correct answers, the
production rules associated with Rule I are preferred over the pre-Rule I production rules.
As the proportion of successful answers is still relatively low, distance is incorporated shortly
after it becomes available to the model. However, as the available capacity is insufficient to
incorporate both weight and distance in the decision process at the same time, the model
switches its attention to distance, discarding the weight information. As determining the an-
swers based solely on weights is less successful if the weights are equal than if the weights
are unequal, the shift from weights to distances only occurs if the weights are equal. When the
capacity has increased sufficiently to make it possible to use a strategy that incorporates both
weights and distances, the model progresses to Rule III behavior. In this Phase, the weights
and distances are examined regardless of the weights being equal or unequal. However, as
knowledge to combine the weights and distances is as yet unavailable, the model can only
guess the answer if the weights and distances are both unequal. Only when the concept of
addition or multiplication becomes available is the model able to progress to the Addition Rule
or Rule IV.

3.3. Simulation I: Phase-by-phase developmental progression

In this section we present the model in more detail and discuss how it simulates development.
In discussing the model, we will refer toTable 2andFig. 4. Table 2presents the numbers
and proportions of correctly answered problems for all possible balance scale configurations.
The numbers presented in this Table are specific to a balance scale with a maximum of five
weights and five distances on either arm. For Rule I and Rule II,Table 2contains both the
overall statistics and statistics broken down into the two different branches of these Rules (i.e.,
“weights equal” and “weights unequal”, seeFig. 1). As all items of a particular item type are
answered using the same branch, the other branch does not apply for that item type. This is
denoted by a full stop inTable 2.

Fig. 4plots the utilities of key production rules as function of the number of balance scale
problems presented to the model. As the random selection of training items influences the exact
course of the utilities, the graph shows some variation over runs. However, the values shown
are illustrative for a typical run of the model. The production rules inFig. 4are all constructed
by the model on the basis of the declarative actions.
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Table 2
Number of correct responses per combination of Rule and balance scale item type for a five weights times five
distances balance scale configuration

Balance scale types Overall correct

B D W CB CD CW WD Absolute Proportion

Pre-Rule I (guess) 8.3a 33.3a 33.3a 8a 29.3a 29.3a 66.7a 208.3 0.33

Rule I 25 0 100 0 0 88 200 413 0.66
Weights equalb 25 0 – – – – – 25 0.20
Weights unequalb – – 100 0 0 88 200 388 0.78

Rule II 25 100 100 0 0 88 200 513 0.82
Weights equalb 25 100 – – – – – 125 1
Weights unequalb – – 100 0 0 88 200 388 0.78

Rule IIIc 25 100 100 8a 29.3a 29.3a 200 491.6 0.79
Addition Ruled 25 100 100 20 64 64 200 573 0.92
Rule IV 25 100 100 24 88 88 200 625 1

Number of items 25 100 100 24 88 88 200 625

Note. Different balance scale configurations lead to different absoluteand relative values.B: balance item,D:
distance item,W: weight item, CB: conflict balance item, CD: conflict distance item, CW: conflict weight item,
WD: weight/distance item. Divisions by three indicate guessing the answer.

a Assuming a 1/3 probability of a correct guess.
b 125 items have equal weights, 500 items have unequal weights.
c As described inSiegler (1976), e.g., “Muddle Through”.
d As described inNormandeau et al. (1989).

3.3.1. Phase 0
At the start of each presentation, a problem is randomly sampled from the set of all possible

problems. For each problem, the model is presented the number of weights and the distance
to the fulcrum for both sides. Initially, the model resorts to guessing because it cannot retrieve
any properties (i.e., the activation level of the weight property is still below threshold) to use
in the problem solving process. As can be seen inTable 2, the proportion of correct answers
for the guess-strategy is low. Therefore, the utility of the production rule that implements the
guessing (seeFig. 4, labeled A(g)) drops rapidly. Because of the low utility of this guess-rule,
the interpretive production rules will often be selected.11 Consequently, as soon as a new
strategy to solve the problems becomes available, the model will solve balance scale problems
using the new strategy.

3.3.2. Phase I
The general strategy is represented in five steps:

1. Retrieve a property on which the two sides of the balance can differ.
2. Encode the values of the specified property.
3. If the encoded values are unequal, then base the answer on the observed difference.
4. If the encoded values are equal, then search for a new property and if found, return to

Step 2.
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5. If no new property can be found, then render an answer based on the encoded values.

This general strategy first leads to Rule I. Step 1 determines the property on which the model
will focus its attention. As initially the weight property is most active, the model will encode the
weight values (Step 2) and use those to solve the balance scale problem. If the perceived values
differ, Step 3 applies and an answer is determined on the basis of this difference (predicting
a tilt to the side with the greater number of weights). If the perceived values are equal, the
interpretation of the declarative knowledge leads to an attempt to retrieve a new property (Step
4). However, because the activation level of the distance property is too low, the model cannot
retrieve it and consequently applies Step 5. As a result of the weights being equal, Step 5
renders “balance” as answer.

When the corresponding declarative actions are interpreted, the composition mechanism
constructs new production rules. As discussed earlier, the composition process removes most
retrievals from the constructed production rules, resulting in hard-coded values in the new
production rules. Because of this, Step 1 is replaced by a production rule that immediately
initiates a retrieval of the weightvalues, removing the requirement of having to retrieve a
propertyfirst (same holds for Step 3). As the encoding of the values is based on perception
instead of on a retrieval, this step is not removed by the composition mechanism. Because
in this phase Step 4 always results in a failure to retrieve a new property, the composition
mechanism will remove the retrieval request for a different property and, will instead directly
answer “balance” (i.e., use Step 5) if the weights are equal.

The resulting production rules12 are presented below. Before the model reaches the stage
in which it only uses these production rules, it will have constructed numerous production
rules that were only used once before being replaced by a new production rule. These replaced
production rules remain available to the model. However, because these production rules (and
the initial interpretive production rules) require more steps and more retrievals before arriving
at an answer, these production rules are more expensive and therefore have a lower utility. As
a result, the production rules associated with Rule I, as shown below, will prevail.

Production Rule:Initialize (->W)
IF the goal is to solve a balance scale problem
THEN request the encoding of the values of the weight property

Production Rule:Initiate-Encoding
IF the goal contains a request to encode the values of a property
THEN encode those values

Production Rule:Test-Encoded-Values-a (<>W:A(W))
IF the values of the weight property have been encoded
AND the values are unequal
THEN render as response the side with the largest value

Production Rule:Test-Encoded-Values-b (=W:A(b))
IF the values of a property have been encoded
AND the values are equal
THEN render as response “balance”
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Fig. 5. Tree-like representation of the ACT-R model in Phase III. Below the boxes are the labels as used inFig. 3
and the text.

Each production rule has been assigned a shorthand notation which is mentioned directly
after the name of the production rule (e.g., “->W”). This shorthand notation is used both in
the text and inFigs. 4 and 5. In this notation, “W” stands for weights, “D” for distances, “g”
for guess, “b” for balance and “m” for multiplication. The operator “->” refers to “switch
attention to”, “=” to a condition requiring equal values for the property mentioned after the
equal sign, “<>” to requiring unequal values and “A(x)” refers to “answer based on x”. For
example, “<>W,<>D:A(g)” refers to the production rule reflecting the following knowledge:
if the weight and distance values are unequal, guess an answer.

The first production rule (->W) causes the model to consider the weight property. The second
production rule initiates the encoding of the values of the weight property. These two steps
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are not merged because the perception based encoding step is not removed by the composition
mechanism. Based on the encoded values, one out of two production rules matches. If the
weights are equal, the production rule=W:A(b) renders “balance” as response, if the weights
are unequal, the production rule<>W:A(W) renders as response the side with the largest
number of weights. As can be seen inTable 2, if the answer is based on Rule I “weights equal”
(which corresponds to the=W:A(b) production rule), the proportion of correct answers is
lower than if the answer is based on Rule I “weights unequal” (<>W:A(W)). Therefore, the
utility of the weights equal production rule (=W:A(b)) decreases faster than the utility of the
weights unequal production rule (<>W:A(W)), as is visible inFig. 4.

As the utility of a constructed production rule is based on the utilities of its parent production
rules, newly composed production rules have different initial utilities. As the ->W production
rule is based on production rules used in Phase 0, it starts with a low utility, whereas<>W:A(W)
and=W:A(b) are not directly based on production rules with decreased utilities. Therefore,
the utilities of these production rules are initially higher.

3.3.3. Phase II
Because of the decrease in utility of the=W:A(b) production rule, the interpretive pro-

duction rules will eventually try to construct new strategies based on the declarative “search
for a difference” action. The number of problems required for this to happen depends on the
distribution of the balance problems. For example, if the proportion of weight items is large,
as in the simulations of McClelland(McClelland, 1989, 1995), the production rules used in
Rule I will encounter fewer failures and will remain active longer.

To find a new strategy, the model has to include a new property in the reasoning process. As
long as the activation of the distance property is below the retrieval threshold, the model is in
Phase I. Only when the distance property reaches a sufficient level of activation, is it incorpo-
rated in the answering strategy.13As soon as this level is reached, the composition mechanism
starts to construct new production rules as it did at the start of Phase I. The resulting two
most significant production rules are=W,<>D:A(D) and=W,=D:A(b). The first production
rule determines the solution based on the distance values if the weights are equal. The second
production rule renders the solution “remains in balance” if the values for both properties
are equal. Since these production rules always yield the correct answer (seeTable 2, Rule II,
weights equal), the utility of these production rules increases asymptotically as theP value in
U = P ×G−C approaches 1 and the costs are constant. This increase inP also influences the
utility of the ->W production rule, as this rule now gives rise to a greater proportion of correct
answers.

3.3.4. Phase III
During Rule II behavior, the utility of<>W:A(W) decreases. This decrease will cause

the interpretive production rules to be used occasionally. However, the available declarative
knowledge in Phases I and II limits the “search for a difference” strategy to one unequal
dimension. Therefore, as long as more advanced versions of this knowledge are unavailable,
the model cannot progress to Rule III.

As the progression from Rule II to Rule III is associated with a shift from unidimensional
to multidimensional reasoning(Case, 1985; Chapman, 1990; Pascual-Leone, 1970; Siegler,
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1996), the declarative actions are modified to reflect this change. At about problem presentation
1250 inFig. 4, the declarative representations are extended to allow for the retrieval of a new
property even if the values of the first encoded property are unequal. This extension involves
the modification of the original Step 3, as is shown below:

1. Retrieve a property on which the two sides of the balance can differ.
2. Encode the values of the specified property.

3a. If the first encoded values are unequal, then store the encoded values and search for a
new property and return to Step 2.

3b. If both the first set of encoded values and the second set are unequal then search for and
apply a method that uses both sets to render an answer.

4. If the encoded values are equal, then search for a new property and if found, return to
Step 2.

5. If no new property can be found, then render an answer based on the encoded values.

Now, in case the weights are unequal, applying the interpretive production rules will lead
the model to apply Step 3a. This results in the retrieval of distance as an additional property
to take into account. If the encoded distance values are equal, the model will base the answer
solely on the weight values as these are already known to be unequal. However, if the distance
values are unequal, the model searches for a method to combine both weights and distances.
If a method cannot be found, the model will resort to guessing. When the composition process
is complete, i.e., when no new production rules can be created, the model solves balance scale
problems using the production rules as shown inFig. 5.

The guessing production rule is incorrect in two thirds of all cases. As a consequence, its
utility decreases to a relatively low level. Therefore, this phase is relatively unstable: if too
many incorrect answers are registered in succession, behavior will temporarily regress to Rule
II (cf., Jansen & Van der Maas, in press, Table 7). InFig. 4, this is reflected in the continuation
of updating of the utility of the<>W:A(W) production rule. This decrease in utilities also
causes the model to regularly test for other methods to combine the unequal values of weights
and distances.

3.3.5. Phase IV
As soon as the concepts of addition or multiplication become available, these are incorpo-

rated in the decision process (Step 3b), thereby replacing the guess production rules. InFig. 4,
the multiplication method (<>W,<>D:A(m)) is used from about problem 1,400 onward. As
a side effect, it is only after the multiplication rule has become available, that the<>W->D
production rule wins the utility competition over<>W:A(W). This is visible inFig. 4by com-
paring the utilities of<>W:A(W) and<>W->D. During Phase III, their utilities are relatively
equal, only after the transition to Rule IV, the utility of<>W->D increases sharply. A similar
effect is visible for ->W (label: ->W′). As this production rule is never involved in any in-
correct answer in Phase IV, its utility increases consistently. However, because of the relative
large number of incorrect answers ->W was involved in previously, its utility increases more
gradually.

As can be seen inTable 2, the Addition Rule gives a correct answer to most balance scale
problems. Therefore, its utility will not decrease below the utility level of the interpretive pro-
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duction rules. Only if the model is presented a sequence of items that are answered incorrectly
using the Addition Rule, the utility of this production rule drops below the utility of the interpre-
tive production rules. Only in this situation, the model can progress to Rule IV. This is consistent
with the infrequency of a spontaneous improvement from the Addition Rule to Rule IV.

Note that even when the multiplication method is available, problems that can be solved
with simpler comparisons of values will still be solved by searching for differences. This is
due to the high utility of the associated production rules. Therefore, the interpretive production
rules cannot interfere because the interpretive production rule’s utility is too low compared to
the utility of the comparison production rules. Although a different explanation of the sparse
use of the multiplication method could refer to the relative high cost of multiplication, this
model does not depend on this assumption.

3.4. Simulation II: Transitions without feedback and the Torque Difference Effect

As was shown byJansen and Van der Maas (2002), transitions from Rule I to Rule II may
also take place without feedback. They describe three different types of transition patterns (see
Fig. 2). The Maxwell convention pattern obtains when the improvement to Rule II occurs at
the same distance difference as the regression to Rule I. The delay convention pattern obtains
when the improvement to Rule II occurs at a higher distance difference than the regression to
Rule I. Finally, the sudden jump pattern obtains when after the progress to Rule II, the child
never regresses to Rule I. In the present section, we will illustrate how transitions without
feedback as well as the observed transition patterns can be explained by the model.

We presented the model with the same sequence of problems as in the experiments of Jansen
and Van der Maas. Like Jansen and Van der Maas, we provided no feedback about the correct-
ness of the given answers. Without feedback, the utilities of production rules do not change. As
the activation of chunks is based solely on the number of retrievals, irrespective of the success
or failure of the retrieving production rules, the activationsare updated. Therefore, the only
source of changes during the presentations of problems without feedback is the activation of
declarative knowledge.

The manipulated variable in the experiments of Jansen and Van der Maas is the difference
in distances from the fulcrum between the left and right sides of the balance scale. A number
of consecutive balance problems with equal weight configurations, but with different distance
configurations, were presented to children. In the first half of the problems, the difference
in distance between left and right was increased by one distance unit per problem. In the
second half, the distance was decreased by one distance unit per problem. We assumed that
this step-by-step increase in difference would increase the perceptual saliency of that property.
This additional saliency can be represented in the ACT-R model as an increased activation of
the distance property. To achieve this, the activation formula

Activation = B = ln




n∑
j=1

t−d
j




was extended to: Activation= B + saliency. The saliency is calculated by simply scaling
the distance difference (saliency= �distance/c, wherec is the scaling constant). Note that
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the default ACT-R activation formula contains a term reflecting noise. This simulation is run
without noise as noise would not provide different results in this simulation.

To progress to Rule II, the model has to apply the interpretive production rules at least occa-
sionally. As long as the distance property remains below the retrieval threshold, performance
is consistent with Rule I. However, the saliency associated with extreme distance differences
can increase the activation of the distance property to a level above the retrieval threshold. If
the distance becomes sufficiently activated, the distance property is retrieved and the distance
values are used in determining a solution. If this happens before the maximum distance differ-
ence is reached, the next problem is also solved using the distance property, as the previous
presentation increased the base level of the distance chunk’s activation (B) and the increased
distance difference also increased the activation. When the maximum difference is reached, the
next presented problem has a decreased distance difference and therefore a lower additional
saliency activation. What happens at this point depends on the interplay between increase in
base-level activation and the decrease in saliency activation. If the base level was increased
more than the decrease in saliency activation, the model is still able to retrieve the distance
property. This results in continued Rule II based behavior. However, if the increase inB is
smaller than the current decrease in saliency activation, the model is not able to retrieve the
distance property, and therefore regresses to Rule I.

The results of the simulation are presented inFig. 6. The solid lines represent the activation
of the distance chunk. When the total activation of this chunk is above the threshold which is
depicted by the horizontal dotted line atY = 0, performance is in accordance with Rule II.
The performance, given the current activation, is shown as small circles, either at the bottom
of the graph (denoting Rule I use), or at the top of the graph (denoting Rule II use).

If during Rule II use the increase in the base level is small compared to the differences in
saliency activation, the regression to Rule I behavior takes place at the same distance difference
as the change to Rule II behavior. The phenomenon that the change takes place at the same point
is referred to as the Maxwell convention (seeFig. 6a). If the increase in the base level is large,
the activation without the saliency component might be large enough to ensure the activation is
above the retrieval threshold (the sudden jump pattern,Fig. 6c). If the base-level activation is
raised slightly, but not sufficiently to be retrieved in the absence of additional saliency activation,
the delay convention pattern appears (Fig. 6b). These differences in activation effects can be
explained by, for example, differences in original base levels or by differences in levels of
elaboration of declarative chunks.

Although these explanations of the transition patterns are formulated in terms of the activa-
tion of the distance property, the composition process can also explain the sudden jump pattern.
During the increased activation period, the composition process starts to construct new produc-
tion rules. If the composition process is complete, the resulting production rules are completely
specialized. That is, all retrievals (except for the encoding of the actual values of weights and
distances) are removed from these production rules. Because the explicit search for the distance
property is removed from the production rules, the activation of the distance property chunk
does not determine the behavior of the model. Thus, giving rise to a sudden jump.

The saliency of the distance property, modeled as an additional activation of the correspond-
ing chunk, also explains the Torque Difference Effect. As torque difference is highly correlated
with distance difference, items with large torque differences will on average cause an increased



Fig. 6. Simulation of no-feedback transition patterns.
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activation for the distance chunk. This increases the probability that distance will be included
when the declarative actions initiate a new search for a difference. However, this willonlyapply
if the utility of the interpretive production rules and the utility of the rules that currently solve the
problem are similar. In other words, the torque difference only influences the model’s behavior
in the instable period just before transitions. This more restricted Torque Difference Effect is in
accordance with the reanalysis of the Torque Difference Effect(Jansen & Van der Maas, 1997).

In this second set of simulations, the explanation of developmental phenomena is based on
the influence of the additional saliency based activation. In the first set of simulations, saliency
activation was disabled. However, no qualitative change in model performance would occur
if saliency was added to the model used in the first set of simulations. The effect would be
limited to minor modifications in the timing of Rule transitions. As this would complicate
matters unnecessarily, we decided not to incorporate the notion of saliency in the first set of
simulations.

4. Discussion

In this paper we presented a model of balance scale behavior that is based on three compo-
nents: architectural and task-independent mechanisms, task-specific concepts, and constraints
related to cognitive capacity. Earlier, we discussed the merits of previous models of balance
scale behavior in terms of four empirical criteria. We now turn to a discussion of the new model
in terms of the empirical criteria and subsequently we outline the relation between our model
and the previous models.

4.1. Empirical criteria

4.1.1. EC1: Rule-like behavior
The first empirical criterion is the presence of Rules (i.e., stable performance) and transi-

tions between these Rules. As demonstrated in Simulation 1, the ACT-R model shows stable
performance when the composition process has constructed a fixed set of production rules
to solve balance scale problems. As long as the utility of the production rules is higher than
that of the interpretive production rules, no new production rules are constructed. But even if
the interpretive production rules are applied, no new rules can be constructed in the absence
of new knowledge for the construction of better rules. In both situations, behavior is stable.
However, as soon as the utility of the composed production rules drops below the utility of the
interpretive production rulesandsufficient knowledge is available, new production rules are
composed. This changes the way in which the model responds. At this point several rules have
comparable utilities: the old production rules, the interpretive production rules, and the newly
composed production rules. This makes behavior at this point highly dependent on factors like
noise, the distribution and type of presented balance scale problems, and the visual saliency of
task dimensions.

In short, the Rule-like behavior is explained by architectural mechanisms: The stable periods
associated with Rule-like behavior are explained by the stabilizing effects of the adjustments of
the utility and activation of available knowledge as specified by ACT-R. Whereas the transitions
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to new Rules depend on the ACT-R mechanisms to construct new production rules. With
different task-specific knowledge, the framework of the model can be applied to different
reasoning tasks that are associated with Rule-like behavior.

4.1.2. EC2: Rule sets
A model of balance scale behavior should reproduce the four distinct Rules as originally

presented bySiegler (1976), and the later identified Addition Rule (e.g.,Normandeau et al.,
1989). As discussed earlier, our model reproduces the Rules identified by Siegler and is also
able to perform according to the Addition Rule. The Addition Rule is not easily replaced by
Rule IV because the Addition Rule results in the correct responses to most items. The model
progresses to Rule IV only if it is presented with a carefully selected set of balance scale
problems that are answered incorrectly with the Addition Rule. This is consistent with the
observation that very few children progress to Rule IV spontaneously.

The order of transitions matches the empirical observed sequence. This is based on con-
straining the availability of task-specific concepts and the assumption of processing limitations
related to cognitive capacity. For example, only when the weight concept is available, is the
model able to progress from pre-Rule I to Rule I; only when the concept of multiplication be-
comes available, can the model progress to Rule IV, etc. With respect to the cognitive capacity,
as long as the available capacity constrains the model to the use of a single property (i.e., either
weight or distance), the model cannot proceed to Rule III.

As discussed earlier, the assumptions with respect to the initial unavailability of task-specific
concepts and the capacity constraints are in line with empirical evidence.

4.1.3. EC3: Transition patterns without feedback
Transitions from Rule I to Rule II can occur when children are presented with a sequence of

distance problems with increasing distance differences, even in the absence of any feedback
about the correctness of their responses. As we have shown in Simulation 2, the ACT-R
model explains this phenomenon by incorporating visual saliency in the activation of chunks.
The larger the difference between the values of a property for the left and right side of the
balance scale, the larger the additional activation of the chunk that represents that property.
When the distance difference is decreased again, the activation of a chunk might drop below the
retrieval threshold, making that property unavailable to the answering process. Given individual
differences in both activation updating and production rule composition, the three types of
transition patterns emerge (i.e., the Maxwell convention, the delay pattern, and the sudden
jump pattern).

However, feedback still plays an important role in the presented model. That is, only by the
feedback-driven updating of the production rules utilities, the model can develop to a situation
in which a transition without feedback can take place. Although feedback is not necessary for
the actual transitions, a model would not progress from the beginning of a phase to the end of
that phase without feedback.

4.1.4. EC4: Torque Difference Effect for large torque differences
As the transition patterns are directly related to the distance difference and therefore to the

torque difference, our model shows torque difference effects. However, our model does predict
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that the Torque Difference Effect will not be strong enough to give rise to an improvement at
all times. That is, the Torque Difference Effect can only influence the behavior of the model
in the vicinity of transitions.

Summarizing, we have presented a model that passes the four empirical phenomena as-
sociated with balance scale learning. In the construction and description of the model, care
was taken to clearly state all necessary assumptions and to have all assumptions supported by
empirical evidence.

4.2. Comparisons and predictions

The successful reproduction of the empirical phenomena by the presented model was partly
realized with features that were also used in previous models. Like the symbolic models,
behavior in the ACT-R model is based on the application of production rules, which results in
rule-like behavior. As in the previous models, new production rules are learned by extending
the already present knowledge. However, instead of containing a few complex production rules
(like the complete trees presented inFig. 1), our model consists of a larger number of smaller
production rules. Each of these production rules performs only a small part of the complete
answering process. Therefore, newly constructed production rules can simply replace older
production rules instead of requiring a complex mechanism to modify existing production rules.

As in the neural net models of balance scale behavior, quantitative information plays an im-
portant role in the ACT-R model (i.e., utility and activation). The dynamics of these quantitative
variables are important for the description of the empirical phenomena.

The combination of features from ACT-R and the symbolic and neural net type of models
provides the basis for a number of achievements specific for this model:

(1) The model produces the relatively abrupt transitions, which are problematic in the
non-symbolic models.

(2) It explains transitions without feedback and the related transition patterns, which cannot
be explained from the learning methods used in the previous models.

(3) The model demonstrates that, given a non-biased training set, Rule IV will not easily
be learned because of the high success-rate of the Addition Rule.

(4) The presented model is able to explain both phenomena related to long-term
development and phenomena which are only observable during short time-spans (cf.,
Anderson, 2002).

(5) The model makes explicit that the notion of “search for differences” combined with a
gradual increase in capacity and knowledge is sufficient to explain development on the
balance scale task.

However, the most distinct feature of our model is the parsimony of its main assumption:
Children who are solving balance scale problems are explicitly looking for differences between
the left and right side of the balance scale.

The model also makes novel predictions about behavior on the balance scale task. During
pre-Rule III behavior, the model is not sensitive to (multiplication) instruction on the balance
scale task. Only when the model’s behavior is in accordance with Rule III, the model is able
to benefit from multiplication instruction. Similar reasoning holds during other Phases, for
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example, the model predicts that instruction emphasizing the importance of distance during
stable Rule I usage does not have an effect on behavior.

The model predicts an important role for visual saliency, especially during transitions. An
example of which is the explanation of the Torque Difference Effect as this effects are explained
on the basis of visual saliency. Because effects of visual saliency can only influence the behavior
of the model during the less stable periods around transitions, the model predicts that the Torque
Difference Effect is limited to these periods.

Although not discussed in this paper, the model can also be used to predict reaction time
patterns. As ACT-R specifies the amount of time necessary for the steps in the answering
process, reaction time patterns can be easily derived from the model. For example, during and
just after transitions, the model predicts increased reaction times as the model is still in the
process of constructing the optimal set of production rules for the new phase. During the process
of constructing this optimal set, additional production rules are used, causing an increase in
reaction times. Moreover, previous work on arithmetic skills (e.g.,Lebiere & Anderson, 1998)
might be incorporated into the model to use analyses of reaction times to shed light on what
strategies are used during the unstable Phase III.

Notes

1. Given a five weights and five distances at each side balance scale, 68% of all possible
items fall in these six items types, see Table 2. The remaining items have more weights
at the side with the larger distance, and are therefore less suitable to categorize behavior.
We will refer to these items as weight/distance items.

2. To ease presentation, the Rules empirically identified by Siegler and others, see EP2,
are written with a uppercase “R”, whereas ACT-R production rules, to be introduced
later, are written with a lowercase “r”. A single Rule is always implemented as a set of
production rules.

3. Latent class models consist of classes that are defined by response patterns associated
with the item types. Latent class models are fitted by determining the relative size of each
of the classes(McCutcheon, 1987). Main advantages over the standard rule assessment
method are (a) statistical methods to evaluate the fit of the Rules to the data are available,
(b) it is not necessary (although possible) to specify the Rulesa priori, so that new Rules
can be detected, and (c) different balance scale tests with different numbers of items
can be compared.

4. Some models directly implement the Rules as specified inFig. 1. Classification by latent
class analysis is superfluous in this case.

5. An often-cited production rule model of balance scale behavior is a model in SOAR
(Newell, 1990, p. 465 ff). However, the description of this model does not provide
enough information to evaluate it.

6. Latent class analysis has yet to be applied to the data generated by this model.
7. ACT-R has previously been applied to cognitive development.Taatgen (1999)focussed

on the compilation and usage of different production rules,Lebiere and Anderson (1998)
focussed on the acquisition and tuning of declarative knowledge,Jones, Ritter, and
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Wood (2000)focussed on capacity related constraints andTaatgen and Anderson (2002)
focused on past-tense learning.

8. This addition is not part of the ACT-R version as described inAnderson and Lebiere
(1998), but is incorporated in a new version(ACT-R v5.0, 2002a). Although the version
of ACT-R as described inAnderson and Lebiere (1998)is also able to construct new
production rules, the new composition mechanism constructs new rules using a more
principled method.

9. For links to an extended discussion of composition and learning from instruction, see
the ACT-R v5.0 website:http://act-r.psy.cmu.edu/software/.

10. Note that the ACT-R model would also work given an initially higher activation for
distances, i.e., it does not explain the preference of weight above distance.

11. Given the general nature of the interpretive production rules, the usage of these produc-
tion rules is not limited to the balance scale domain. Because of this extensive “external”
usage, the parameters will not be influenced significantly by the application of the pro-
duction rules in the balance scale domain. Therefore, we assigned a constant utility
of approximately 13.3 (+noise) to these production rules. This value is based on aP

value of 2/3 and a relative lowC value, but other values would not influence the general
behavior of the model.

12. The production rules presented here have been edited for reasons of readability. All
code necessary to run the model is available athttp://www.van-rijn.org/hedderik/bstm/.

13. A discussion of how this threshold is reached is outside the scope of this paper, but both
developmental changes in activation or threshold parameters, and exposure to tasks in
which distance is an important predictor might play a role.
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