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Abstract

Information about the structure of a causal system can come in the form of observational data—
random samples of the system’s autonomous behavior—or interventional data—samples conditioned
on the particular values of one or more variables that have been experimentally manipulated. Here we
study people’s ability to infer causal structure from both observation and intervention, and to choose
informative interventions on the basis of observational data. In three causal inference tasks, participants
were to some degree capable of distinguishing between competing causal hypotheses on the basis
of purely observational data. Performance improved substantially when participants were allowed to
observe the effects of interventions that they performed on the systems. We develop computational
models of how people infer causal structure from data and how they plan intervention experiments,
based on the representational framework of causal graphical models and the inferential principles of
optimal Bayesian decision-making and maximizing expected information gain. These analyses suggest
that people can make rational causal inferences, subject to psychologically reasonable representational
assumptions and computationally reasonable processing constraints.
© 2003 Cognitive Science Society, Inc. All rights reserved.

Keywords:Causal reasoning; Decision making; Bayesian networks; Bayesian models; Rational
inference; Hypothesis testing; Active learning; Observational learning; Interventions; Structure
learning; Web experiments; Human experimentation; Computer simulation

∗Corresponding author. Tel.:+1-949-824-7642; fax:+1-949-824-2307.
E-mail addresses:msteyver@uci.edu (M. Steyvers), jbt@mit.edu (J.B. Tenenbaum).
1 Tel.:+1-617-452-2010; fax:+1-617-258-8654.

0364-0213/03/$ – see front matter © 2003 Cognitive Science Society, Inc. All rights reserved.
doi:10.1016/S0364-0213(03)00010-7



454 M. Steyvers et al. / Cognitive Science 27 (2003) 453–489

1. Introduction

The ability to infer causal relationships is crucial for scientific reasoning and, more generally,
forms the basis for learning to act intelligently in the world. Knowledge of causal relationships,
as opposed to mere statistical associations, gives us a sense of deep understanding of a system
and a sense of potential control over the system’s states, stemming from the ability to predict
the consequences of actions that have not yet been performed (Pearl, 2000). There has been
extensive study of how people make inferences about simple causal relationships, focusing on
learning the relationship between a single cause and effect (e.g.,Anderson, 1990; Buehner,
Clifford, & Cheng, 2002; Cheng, 1997; Griffiths & Tenenbaum, 2003; Jenkins & Ward, 1965;
Lober & Shanks, 2000; Shanks, 1995; Tenenbaum & Griffiths, 2001; see alsoHagmayer &
Waldmann, 2000; White, 2000). In the present research, we are interested in how networks
involving multiple cause–effect relationships can be inferred. This question has recently re-
ceived much attention in philosophy and computer science (Glymour & Cooper, 1999; Pearl,
2000, 1988; Spirtes, Glymour, & Scheines, 2000) but has received relatively little attention
in psychology. The problem of inferring cause–effect relationships is difficult because causal
relations cannot be observed directly and instead have to be inferred from observable cues. In
addition, in order to infer the structure of a network of multiple cause–effect relationships, we
have to understand how individual cause–effect relationships interact.

We study people’s ability to infer the structure of causal networks on the basis of two kinds
of statistical data: pure observations and experimental manipulations. The former case involves
passive observation of random samples of a system’s autonomous behavior, while in the latter
case, the learner can actively control some variable in the system and observe the corresponding
effects on other variables in the system. The difference between passive and active learning
has also been compared to the difference between learning from watching and learning by
doing, or the difference between correlational (non-experimental) and controlled experimental
studies in science (Pearl, 2000). We will refer to the data gathered from passive and active
learning as observational and interventional data, respectively.

Our studies of human causal learning are motivated by the computational framework of
learning in causal graphical models, or Bayesnets (Glymour, 2001; Glymour & Cooper, 1999;
Pearl, 2000, 1988; Spirtes et al., 2000). The theory of learning in graphical models explains
how and when causal structure may be inferred from statistical data, either passive observa-
tions, interventions or a combination of the two. We propose computational models of human
causal learning in a rational framework (Anderson, 1990; Oaksford & Chater, 1994), based on
Bayesian inference over causal graphical model representations. Our models also adopt certain
representational and processing constraints, which are not intrinsic to the rational framework
but which lend added psychological or computational plausibility.

Our framework for modeling people’s intervention choices is inspired by work in statistical
machine learning on active learning of causal networks (Murphy, 2001; Tong & Koller, 2001).
This work treats the task of intervention selection as an information maximization problem:
the goal is to pick the intervention for which, when we observe its effects, we can expect to
gain the maximum possible information about the underlying causal structure. Data selection
and hypothesis testing strategies have long been studied in scientific discovery (e.g.,Klahr &
Dunbar, 1988), concept learning (e.g.,Bruner, Goodnow, & Austin, 1956) and the reasoning
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about rules (Wason, 1968), including recent work from an information-maximization stand-
point (Oaksford & Chater, 1994; Nelson, Tenenbaum, & Movellan, 2001). Yet, to our knowl-
edge, this approach has not been pursued previously in the context of human causal learning.

The plan of the paper is as follows. We first give a short overview of statistical approaches to
learning causal structure with graphical models. We then present a series of three experiments
with human subjects, along with computational models of each task and model-based analyses
of the experimental results. We close with a discussion of how this work relates to other studies
of human causal inference and some open questions.

2. Structure learning in causal graphical models

This section is not intended as a general introduction to causal graphical models. Its purpose
is to explain how causal structure can be inferred on the basis of probabilistic relationships
between variables (c.f.,Glymour & Cooper, 1999; Pearl, 2000; Spirtes et al., 2000), and
to introduce the family of causal networks used in our empirical work. For complementary
perspectives on how the paradigm of graphical models may be brought to bear on questions of
human causal inference, seeGlymour (2001), Gopnik et al. (in press), Tenenbaum and Griffiths
(2001, in press), andGriffiths and Tenenbaum (2003).

Directed graphs provide us with an intuitive way to express causal knowledge (seeFig. 1).
Nodes represent continuous or discrete state variables of a system and arrows represent direct
causal relations, pointing from causes to effects. The state of each variable is modeled as some
function of the states of its parents—its direct causes. The functions relating causes to their
effects may be probabilistic or deterministic. These functions are assumed to be local and
modular (Reichenbach, 1956; Suppes, 1970), operating independently for each “family” of
a state variable and its parents. The states of variables with no parents may be determined
exogenously or by some stochastic process with a particular prior probability distribution.
Together, these ingredients define a joint probability distribution over alln state variables
X1, . . . , Xn:

P(X1, X2, . . . , Xn) =
n∏
i=1

P(Xi |parents(Xi)), (1)

Fig. 1. Three causal network structures, shown with the corresponding factorizations of the joint probability distribu-
tionsP(A,B,C). Dashed lines group together Markov-equivalent networks, which imply equivalent factorizations
of the joint probability distribution and thus are not in general statistically distinguishable based on pure observa-
tional data.
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where each termP(Xi |parents(Xi)) defines the local causal process for one nodeXi as a func-
tion of the states of its parents, parents(Xi). Any joint probability distribution can always be
expressed in the form ofEq. (1)in many different ways, by choosing any arbitrary ordering of
nodes and letting the parent set of nodei include all prior nodes 1, . . . , i−1 in the ordering. But
if the system does have a causal structure, then a causally based factorization will almost surely
provide a more compact representation of the joint probability distribution than an arbitrarily
chosen factorization.

The factorization ofEq. (1)embodies what is known as the causal Markov condition: the state
of any variable is probabilistically independent of its non-descendants given the states of its
parents. As a concrete example, consider the three-node chain network shown inFig. 1, where
the only direct causal links are fromA to C andC to B. In this network, the variables at the two
ends of the chain,A andB, are marginally dependent: knowing nothing else about the system,
observations ofA will carry information aboutB, and vice versa. However, conditioned on the
observation of the intervening variableC, Ahas no further influence onB. Thus, the probability
distributions ofA andB are conditionally independent givenC. No other independencies exist
for this system; the pairs{A, C} and{C, B} are always dependent because they are connected
by direct causal links. The Markov condition is itself an instance of a very general and useful
notion, that the causal structure of a system places constraints on the possible patterns of data
that can be observed. Causal inference exploits this principle to reason backward from observed
patterns of data to the causal structure(s) most likely to have generated that data.

2.1. Distinguishing networks by observations

The Markov condition directly forms the basis for many algorithms for causal inference
(Glymour & Cooper, 1999; Pearl, 2000; Spirtes et al., 2000). These algorithms attempt to
estimate the statistical dependencies that hold in a given data set and then to construct the
set of causal graphs that, according to the Markov condition, are consistent with just those
dependency constraints. Such “constraint-based” algorithms are based on efficient and elegant
methods for searching the space of all possible causal structures, but their capacity for causal
inference is limited by the limited nature of the constraints they exploit. They look only at
whether two variables are statistically dependent, an empirical relationship that could derive
from many different underlying causal structures and that may take a fairly large sample size
to establish with confidence. They ignore more fine-grained but psychologically salient cues—
such as whether one variable is always present when the other is, or never occurs when the
other occurs, or always takes on the same value as another variable—which may support much
more rapid and confident structural inferences for particular kinds of causal systems.

We consider causal inference more broadly from a Bayesian point of view (Cooper &
Herskovits, 1992; Friedman & Koller, 2002; Heckerman, 1999; Heckerman, Meek, & Cooper,
1999; Tenenbaum & Griffiths, 2001, in press). A Bayesian learner considers a set of hypotheses
corresponding to different graph structures or different choices of the local probability functions
relating causes to effects. Each hypothesis assigns some likelihood to the observed data, and is
also assigned a prior probability reflecting the learner’s prior knowledge or biases. The posterior
probability of each hypothesis—corresponding to the learner’s degree of belief that it is the true
causal model responsible for generating the observed data—is then proportional to the product
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of prior probability and likelihood. While the Markovian learning algorithms ofPearl (2000)
andSpirtes et al. (2000)can often be interpreted as asymptotically correct approximations to
Bayesian inference, algorithms that directly exploit Bayesian computations may be able to
make much stronger inferences from more limited data. Because our experiments—like many
situations in the real world—present learners with only a small number of observations, we
will base our models on the machinery of Bayesian inference. We save the mathematical details
of our algorithms for later in the paper, but first we present an intuitive example of how such
reasoning works.

Consider the three example networks shown inFig. 1: common-effect, common-cause, and
chain models. To give an intuitive understanding of the different observations that might be
produced by these networks, assume that nodes in the network can be either on or off, that
causes are likely to turn their effects on, that in general effects cannot be produced without a
cause, but that a node without an explicitly modeled cause (i.e., with no parents in the graph) can
turn on spontaneously under some exogenous influence. For example, in the common-effect
model ofFig. 1, two causesA andB have the effectC in common. The nodesA andB can turn
on spontaneously (and independently of each other), and if either is turned on, it is likely that
C will turn on as well. Under this model, likely observations include cases where no nodes turn
on,A andC but notB turn on,B andC but notA turn on, or all three nodes turn on. The relative
probabilities of these events depend on how likely it is thatA or B are activated exogenously. If
these base rates are not high, the situation where all nodes turn on is relatively unlikely. In the
common-cause network, the arrows are reversed: two effectsA andB now have one causeC in
common. IfC turns on spontaneously, then it probably turns on bothA andB as well. Under
this model, likely observations include cases where no nodes turn on or where all nodes are
turned on. In other words, we expect to see a three-way correlation between all variables—
either all on or all off—under the common-cause model, but not under the common-effect
model.

Not all differences in causal structure lead to differences in the likelihood of observations.
The chain network inFig. 1—AcausesC, andCcausesB—has a different causal structure from
either the common-effect or the common-cause network. However, like the common-cause
network, it tends to produce observations in which either all the nodes are on—whenA has
been activated exogenously, and thus turns onC which turns onB—or all the nodes are
off—whenA has not been activated. Thus, a causal chain may not be distinguishable from a
common-cause network based purely on passive observations, while either network may in
general be distinguished from the common-effect network.

These intuitions can be made precise by manipulatingEq. (1), which expresses the likelihood
of different patterns of observation under each causal model. For the common-cause network,
Eq. (1)expresses the joint probability distribution asP(A,B,C) = P (C) P(A|C) P(B|C). For
the chain network shown inFig. 1, Eq. (1) givesP(A,B,C) = P (A) P(C|A) P(B|C). By
applying Bayes’ theorem, we can rewrite the chain network likelihood asP(C) P(A|C) P(B|C),
equivalent to the distribution for the common-cause model. Thus, any statistical pattern of
observations consistent with one of these network structures can also be generated by the other
structure. More formally, these network structures areMarkov equivalent, meaning that they
will in general produce data with the same set of conditional independence and dependence
relationships. If two structures are Markov equivalent, then for any way of choosing the local
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Fig. 2. All three-node causal networks with one or two arrows. Solid lines group together networks of the same
topological type. Dashed lines delineate Markov equivalence classes.

probability functions relating causes to effects in one of the networks, there is some way
of choosing these functions in the other network that predicts exactly the same distribution
of data. Without further knowledge, observational data alone provide no way to distinguish
Markov-equivalent structures, such as the common-cause and chain networks.

If we useEq. (1)to express the joint distribution for the common-effect structure,P(A,B,C)

= P (A) P(B) P(C|A,B), we can see that this structure is not Markov equivalent to either of the
other two structures. There is no way to apply the identities of probability theory, such as Bayes’
theorem, to express this joint distribution in the same form as the other two. Thus, we can make
precise the above intuition that the common-effect structure is in general distinguishable from
the other two structures based on purely observational data. We can also extend this analysis
to much broader classes of network structures.

Fig. 2shows all three-node causal networks with either one or two arrows, divided into nine
Markov equivalence classes. This set includes all common-cause, common-effect and chain
models, along with “one-link” models in which one node is causally disconnected from the
rest of the network. Given sufficient observational data, both constraint-based and Bayesian
approaches to causal inference can always distinguish between causal models in different
Markov classes. Constraint-based methods can never distinguish models in the same Markov
class. Bayesian approaches can do so only if they can exploit some particular structure for the
local probability functions that breaks the symmetries between cause and effect.

2.2. Distinguishing networks by intervention

When a set of variables comes under experimental control, making it possible to effectively
probe a network to test specific causal hypotheses, this is called an intervention. For exam-
ple, consider the three networks inFig. 3A. These networks, one common-cause structure
and two chain structures, share the same undirected graph but differ from each other in the
direction of one or more arrows. These three networks are Markov equivalent, with identi-
cal patterns of statistical dependency under observation, but under intervention they become
distinguishable.
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Fig. 3. (A) A Markov equivalence class containing three networks which imply the same statistical dependencies
under passive observation. (B) An ideal intervention (X) applied to the middle node, fixing its value to some
constant, screens off all other causes of that node. The effect of such an intervention can be modeled as removing
any incoming causal links to the target node. Note that the resulting structures on the three original nodes now
become distinguishable based on their statistical dependencies; they fall into different Markov classes, as depicted
in Fig. 2.

Formally, an intervention on a single variableA can be modeled by inserting an extraneous
variable into the causal network as an additional parent ofA. In an ideal intervention, the
manipulated variableAbecomes uniquely determined by the external influence; the intervention
screens off the influences any other causes. Graphically, this effect may be represented by
“surgery” on the network (Pearl, 2000): all other incoming arrows to the manipulated variable
A are deleted.Fig. 3Billustrates how this surgery may break the Markov equivalence between
networks that previously had the same patterns of statistical dependency, by rendering variables
independent that were previously dependent.

To generate some intuitions about the utility of interventions, let us assume a network that
functions as in the previous example, and that intervening on a node turns it on. If we intervene
on A, under the hypothesisC ← A → B, the likely result is that all nodes would turn on;
under the hypothesisC → A → B, only A andB would turn on; and under the hypothesis
C ← A ← B, only A andC would turn on. This intervention is maximally effective for
identifying the true causal structure, because it leads to different predictions for all three net-
works. If instead we intervene onB, the most likely results are the same under the hypotheses
C ← A→ B orC → A→ B—only B would turn on—but quite different under the hypoth-
esisC ← A ← B, where all nodes would probably turn on. This intervention is potentially
diagnostic but not ideal. Therefore, in this example, nodeA seems to be the most informative
target of an intervention. We will later discuss an active learning framework (Murphy, 2001;
Tong & Koller, 2001) that formalizes this strategy of choosing interventions based on how much
information they can be expected to provide about the underlying structure of the system.

3. Overview of experiments

We will focus on three empirical questions. First, to what extent can people learn causal
structure on the basis of purely passive observational data? Because observational data is
essentially correlational in nature, this becomes a version of the classic question: to what extent
can we infer causation from correlation? Early statisticians famously argued that causation can
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only be inferred from randomized experiments, never from correlations (Fisher, 1925), or that
there is no need for a notion of causality at all (Pearson, 1911). In parallel, some psychologists
have expressed skepticism about the possibility of causal learning based purely on statistical
data (Ahn, Kalish, Medin, & Gelman, 1995; Waldmann & Martignon, 1998), while others
have argued against the need for specifically causal inference mechanisms as distinct from
more general predictive learning procedures (Rogers & McClelland, in press; Shanks, 1995;
Wasserman, Kao, Van Hamme, Katagiri, & Young, 1996). Recent work in causal graphical
models (Glymour & Cooper, 1999; Pearl, 2000; Spirtes et al., 2000) provides a coherent
framework for defining causality and its relationship to probability, such that it is possible to
prove conditions under which certain causal hypotheses can be reliably discriminated based on
correlational data alone. Constraint-based algorithms turn this logic into an efficient inference
procedure (Pearl, 2000; Spirtes et al., 2000), but there is no evidence yet that people do learn
causal structure using these purely bottom-up methods.Waldmann and Martignon (1998)write:
“In our view, it is unlikely that human learners are good at inducing the causal relations between
several interconnected events solely on the basis of covariation information.”

In our inference tasks, we assess whether people can infer causal structure from covariational
data, but we also provide some additional sources of constraint that reflect the circumstances
of natural causal learning. Most importantly, we give people substantive information about
the nature of the causal mechanism that can help explain the observed covariation (Ahn et al.,
1995). Thus, if two variables are causally connected, our participants can expect not only that
their states will be statistically dependent, but more specifically how the state of the effect
will depend on the state of the cause. Our cover scenarios also constrain the space of causal
network hypotheses people might consider—quite strongly in Experiment 1, but only weakly
in Experiments 2 and 3. The Bayesian inference models we develop use these additional
sources of knowledge in combination with observed data patterns to choose among competing
hypotheses. Our models thus combine the strengths of covariation-based and mechanism-based
approaches to causal induction.

The second empirical question is how and to what extent learning from interventions can be
combined with, and hopefully improve upon, learning from observations. The advantages of
experiment over simple observation have long been recognized within the Western scientific
tradition (e.g.,Mill, 1874), and we expected that human causal learning would likewise be
more effective with interventions than with purely passive observations. It is less clear whether
people can integrate interventional and observational data when both kinds of information
are available, in order to increase the statistical discriminability of different causal hypotheses.
Experiments 2 and 3 explored this question by first giving participants a round of observational
trials, followed by a round of intervention trials after which they could refine their hypotheses
about causal structure.

The third empirical question is really a cluster of questions concerning the relations between
observational and interventional inference, and the principles which guide people’s choice of
interventions to probe causal structure. In laying out his approach to scientific discovery,Mill
(1874)noted that while only experiments can prove causation, pure observation still plays
an important role as the natural guide for experimentation. Entering a new domain, scientists
often do not know what questions are worth asking, and which experiments worth doing, until
they observe a surprising phenomenon along with some other correlated events that might be
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potential causes. Like scientists, people might use observations primarily to form hypotheses
and interventions primarily to test those hypotheses. In Experiments 2 and 3, we asked par-
ticipants to choose an intervention after they had indicated their beliefs about causal structure
formed on the basis of pure observations alone. This method allows us to test the extent to which
intervention choices effectively discriminated between people’s competing causal beliefs, and
indirectly to assess what those beliefs might be. In Experiment 3 we allowed participants to
indicate multiple hypotheses if they were uncertain about the causal relations, and thus we
could test explicitly whether interventions were used effectively to reduce uncertainty.

Several criteria guided our choice of experimental tasks and scenarios. First, to test people’s
ability to construct causal hypotheses for a novel system, many different structures should be
plausible, with the possibility of a causal link between any two nodes and noa priori bias about
the directionality of those links. Second, to test people’s capacity for causal inference from
probabilistic information, noisy causal connections should be plausible. Third, to minimize the
role of low-level attention and memory bottlenecks, correlations should be readily detectable
based on only a small number of trials.

These requirements were met by a task of learning about the communication networks of a
triad of alien mind readers. On each trial, participants were shown one communication pattern,
with each alien thinking of a three-letter non-sense word (consonant–vowel–consonant, e.g.,
TUS) that appeared in a thought balloon above his head (seeFig. 4). Participants were informed
about the mechanism of mind-reading: if alien A reads the mind of alien B, then A thinks of
whatever word B is thinking of. If an alien is reading more than one mind, on each trial he ran-
domly picks the contents of one mind to copy. Participants were also informed that the aliens
had a limited vocabulary, and that because of lapses of attention, mind-reading occasionally
fails. For example, if A and C are both reading B’s mind, a sequence of trials might go like this:

A: TUS JOF LIV RAH PIF TUS
B: TUS JOF LIV DEX PIF TUS
C: TUS JOF LIV DEX PIF KUL

Participants were shown the alien communications for several trials and their task was to learn
who was the reading the mind of whom. As desired, this copying mechanism could plausibly
connect any two nodes in the alien network, in either direction. Although the copying mech-
anism (like any process of information transmission) could be noisy, the use of categorical
variables with many possible states (words) made it possible to detect correlations over just a
few trials.

Fig. 4. A sample screen shot from Experiment 1, showing the thoughts of three aliens with mind-reading abilities.
Participants have to infer whether the middle alien is reading the minds of the two outer aliens (a common-effect
structure) or the two outer aliens are reading the mind of the middle one (a common-cause structure).



462 M. Steyvers et al. / Cognitive Science 27 (2003) 453–489

4. Experiment 1

The goal of Experiment 1 was to assess whether people can use purely observational data to
distinguish between two three-node networks in different Markov equivalence classes.Fig. 4
illustrates what a participant might see on a single trial. The data were generated from either
a common-cause structure, with the two outer aliens reading the mind of the middle alien, or
a common-effect structure, with the middle alien reading the minds of the two outer aliens.

The precise probabilistic models used to generate the observed communication patterns are
as follows. The aliens have a fixed vocabulary ofndifferent words. In the common-cause model
(A← C → B), at each trial, a word for the middle nodeC is first chosen at random from the
vocabulary ofn words. Then each outer nodeA andB has an independent chance to copy the
content of nodeC. With probabilityα, this mind-reading succeeds; the remainder of the time
(probability 1− α), a word is picked randomly from the vocabulary (so thatA or B may still
matchCwith probability 1/n). In the common-effect model (A→ C ← B), random words are
selected independently for nodesA andB, and nodeC has independent chances to successfully
read the minds of each of its two parents. Each of those mind-reading attempts succeeds with
probabilityα. If C successfully reads both minds, it randomly chooses the contents of one to
copy. If C fails to read either mind, which occurs with probability (1− α)2, a random word is
chosen from the vocabulary. In this experiment,α = 0.8 andn = 10. Mind-reading succeeds
most of the time, but occasional mistakes are made, and the aliens have a sufficiently large
vocabulary that the probability of getting a match purely by chance is small but not negligible.

Although there aren3 = 1,000 different communication patterns that could be observed,
it is useful to divide these into four qualitatively distinct sets. These qualitative patterns are
shown inTable 1, along with their probability of being observed under the common-cause and
common-effect models (withα = 0.8 andn = 10). A pattern in which all nodes have the same
content is most likely under the common-cause model, while a pattern in which two adjacent
nodes are equal and one is different is most likely under the common-effect model. Note that
the remaining patterns have equal probability under the common-cause and common-effect
models and therefore do not discriminate between these models.

Participants were never shown these probabilities, nor given any feedback during the ex-
periment that could allow them to learn these probabilities in a bottom-up fashion. Presenting
feedback might also have allowed people to solve this task as a probabilistic categorization
task (Gluck & Bower, 1988), merely by associating the presence or absence of different data
patterns with the corresponding correct answers. Without such feedback, participants can only

Table 1
The four data patterns (d) and their probabilities under a common-cause (CC) and common-effect model (CE) with
α = 0.8 andn = 10

d P(d|CC) P(d|CE)

(1) A= B= C All same 0.67 0.096
(2) A= C, B �= C or B= C, A �= C Two adjacent same 0.3 0.87
(3) A= B, A �= C Two outer same 0.0036 0.0036
(4) A �= B, B �= C, A �= C All different 0.029 0.029
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solve the task by reasoning about the two causal networks and comparing the observed data
with the differential predictions made by these two hypotheses.

4.1. Method

4.1.1. Participants
Forty-seven undergraduate students at Indiana University participated in the experiment.

An additional 116 subjects participated via the world-wide web. We will refer to these two
groups as lab participants and web participants, respectively. We will not go into detail about
the advantages and disadvantages of web experiments since these have been discussed well
elsewhere (e.g.,Reips, 2002; Reips & Bosnjak, 2001).

4.1.2. Procedure
Participants were informed that the alien communications could follow two patterns, one in

which the middle alien reads the minds of the outer aliens and one in which the outer aliens
read the mind of the middle alien. Instructions made no reference to causal structure or the
terms “common-effect” and “common-cause.” The values of the parametersα andn were not
given to participants, but they were told that the aliens have a limited vocabulary and that
mind-reading works most but not all of the time.

Trials were divided into blocks of eight, with a single structure (common-cause or common-
effect) generating all trials within a block. A new structure was chosen randomly for each block.
On each trial, participants indicated which structure they believed to be the correct generating
model, by clicking one of two response buttons. Each response button described one candidate
structure in words and illustrated it using a directed graph drawn on top of the aliens (with
arrows pointing from the alien(s) that produced thoughts spontaneously to the alien(s) that
copied their thoughts). Participants were given a pre-test to make sure that they understood
how these directed graphs captured the directionality of mind-reading. The web experiment
and the lab experiment consisted of 20 and 40 blocks of trials, respectively, with each structure
occurring on half of these blocks. The common-cause and common-effect blocks occurred in
pseudo-random order.

4.2. Results

Because there were many more web participants than lab participants, we first present
the results of the web participants and then show how similar results were obtained with
the lab participants. In general, for all three experiments reported here, we found results for
lab participants and web participants to be remarkably similar, with only one exception in
Experiment 3. This similarity attests both to the robustness of our results as well as to the
potential usefulness of web experiments.

For each participant, we calculated a simple accuracy measure based on the probability
of making a correct response, averaged over all trials on all blocks. The accuracy distribu-
tion over all web participants is shown inFig. 5, top left panel. This distribution clearly
shows two modes, one atP(correct) = 50%, which is chance performance, and another near
P(correct) = 80%. This suggests that there are at least two groups of participants, some who
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Fig. 5. Results of Experiment 1 analyzed with the model-based clustering method. Rows 1–4 show results for
one, two, and three clusters on the web data, and three clusters on the lab data, respectively. Left panels: Accuracy
distributions for participants in each cluster. Middle panels: Effects of trial number on mean accuracy in each cluster,
averaged over blocks. Right panels: Effects of block on mean accuracy in each cluster, averaged over trials within
each block. The legends show, for each cluster, the best-fitting parameter values (γ , δ), the number of participants
covered by that cluster (n), and the degree of fit (R2) between the parameterized model of each cluster and the
behavior of participants within that cluster (calculated at the level of individual trials). All panels show error bars
for participants’ data.

cannot distinguish these two causal models based on observational data and some who can
reason relatively accurately about them. The top-middle panel ofFig. 5 shows accuracy as
a function of trial number within a block, averaged over blocks. A slight increase in perfor-
mance over the eight trials indicates that on average, participants are accumulating information
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over trials. The top-right panel ofFig. 5 shows accuracy as a function of block, averaged
over trials within blocks, with no apparent increase in performance over the course of the
experiment.

Because the bimodal accuracy distribution strongly suggests different groups of participants,
simply analyzing the average data might not give much insight into the actual causal inference
mechanisms used by any one person. Dividing participants into high- and low-accuracy groups,
based on some arbitrary threshold, might come closer to revealing how individuals think about
this task but would not provide an explanation for these differences. Instead, we examine
individual differences in the context of fitting a theoretically based model of causal inference
to individual participants’ data.

4.3. A Bayesian model for inferring causal structure

The intuition behind our model is as follows. By reasoning about the causal structure of the
two candidate networks, people can predict which qualitative data patterns are more or less
likely under each hypothesis. People then choose one or the other network in proportion to the
weight of this statistical evidence in the data they observe. We can formalize this computation
using the log odds form of Bayes’ rule:

ϕ ≡ log
P(CC|D)
P (CE|D) = log

P(CC)

P (CE)
+ log

P(D|CC)

P (D|CE)
. (2)

The log posterior odds,ϕ = logP(CC|D)/P(CE|D), measures the learner’s relative belief in
the common-cause (CC) model over the common-effect (CE) model given the data,D. The
prior odds,P(CC)/P(CE), expresses the relative degree of belief prior to observing any data.
In our experiment, the two networks are equally likelya priori, so we will drop the priors from
all further calculations. The dataD consist of the word patterns{d1, . . . , dT } that have been
observed from Trial 1 to the current trialT. Assuming that each trial is an independent sample
from the true network, we can rewriteEq. (2)in terms of a sum of single-trial log likelihood
ratios:

ϕ =
T∑
t=1

λt =
T∑
t=1

log
P(dt |CC)

P (dt |CE)
. (3)

We assume that the likelihoodsP(dt |CC) andP(dt |CE) are calculated based on the true
values of the causal parametersα andn. Table 1gives the relevant probabilities. For example,
suppose that we have observed three samples from a causal model: on two trials,A = B =
C (“All same”), and on one trial,A = C but B �= C (“Two adjacent same”). Thenϕ =
log(0.67/0.096) + log(0.67/0.096) + log(0.3/0.87) = 2.82; becauseϕ > 0, the evidence
favors theCC model.

To enable this optimal decision model to be compared quantitatively with a broad spectrum
of human behavior, and to increase the model’s psychological plausibility, we extend it with
two free parameters. First, we allow variability in the degree to which people apprehend the
diagnosticity of the data. For truly optimal causal inference, a decision of “common-cause”
should always follow if and only ifϕ > 0. We generalize this decision strategy to one that is
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based probabilistically on the odds ratio:

P(CC) = 1

1+ e−γ ϕ
. (4)

Whenγ = 1, Eq. (4)amounts to a probability matching strategy. If the odds ratio favors the
common-cause hypothesis by a 2-to-1 margin, then the odds of choosing the common-cause
structure over the common-effect structure would also equal 2-to-1. In the limitγ = ∞, Eq. (4)
becomes the optimal strategy of respondingCC wheneverϕ > 0, andCE whenϕ > 0. In the
other extreme,γ = 0, decisions become random, with no relation to the observed data.

Second, we allow variability in the extent to which people integrate evidence over repeated
trials. More recent trials may be weighted more highly, either because people find it difficult
to remember earlier observations or because they believe that more recent trials carry more
reliable information about the current underlying structure. We thus replaceEq. (3)with a sum
of log likelihood ratios weighted by an exponential decay function,

ϕ =
T∑
t=1

[
log
P(dt |CC)

P (dt |CE)

]
e−(T−t)/δ, (5)

where the parameterδ controls the rate of information accumulation across trials. Ifδ is close
to 0, the decision on the current trial depends only on the likelihood ratio of the currently
presented data, independent of observations on previous trials within the block. Ifγ is also
high, this decision will be optimal with respect to the current data; we refer to this behavior as
“one-trial Bayesian.” Ifδ = ∞, there is no decay.Eq. (5)then simplifies toEq. (3), and all data
patterns are weighted equally, as required for fully optimal Bayesian inference. Intermediate
values ofδ yield decision behavior intermediate between these two extremes.

4.4. A model-based clustering technique

A common strategy for fitting a parameterized model to individual participant data is to
find the best-fitting parameter values for each individual’s data. Here we adopt an alternative
fitting technique, in which participants are divided into clusters and a single setting of the free
parameters describes the behavior of all participants within a given cluster. This procedure
allows us to identify subgroups of participants who appear to employ qualitatively distinct
approaches to causal inference.

The clustering problem requires solving for two coupled sets of unknown quantities: the
assignment of participants to clusters and the best-fitting model parameters (γ , δ) for each
cluster. Our fitting algorithm is inspired byK-means clustering (seeDuda & Hart, 1973).
Beginning with random assignments of participants to clusters, we repeat the following two
steps until no participant switches clusters:

1. Given the current assignments of participants to clusters, find the parameter settings that
best fit the performance of all participants within each cluster.

2. Given the current parameter settings, assign each participant to the cluster whose param-
eter values fit best.
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We assess the degree of fit for a particular parameter setting in a given cluster based on a
sum-of-squared-error measure between the model’s decisions and each participant’s decisions
(CCor CE), summed over all trials and all participants within the cluster. To make predictions
for a single individual within a cluster, the model was presented with the exact same sequence
of data which that individual saw trial-by-trial during the experiment.

4.5. Model results

Fig. 5 shows the results of the model-based clustering method when one, two, or three
clusters were assumed for the web data, and also when three clusters were assumed for the lab
data. The plots show accuracy distributions for all participants in each cluster, as well as how
mean accuracy depends on trial and block, respectively, separated for each cluster.

4.5.1. Web data, one cluster
When only one cluster is used, the model finds the best-fitting parameters for the whole group

of subjects. This parameter fit involves a small amount of decayδ and a scaling parameterγ
near one, suggesting that on average, people appear to accumulate some information over trials
and to weight likelihood ratios reasonably on this task.

4.5.2. Web data, two clusters
With two clusters, the model locks on to the two modes of the accuracy distribution. It

is not equivalent to a hard threshold on accuracy; rather, it divides participants into groups
with somewhat overlapping accuracy distributions. Looking at the effect of trial number shows
clearly the basis for the model’s clustering. One group of participants performs at chance due
to a lack of sensitivity to the observed contingencies (i.e., their scaling parameterγ is exactly
zero). The other group of participants performs much better, due to a higher scaling parameter
and some accumulation of information across trials.

4.5.3. Web data, three clusters
With three clusters, the model splits the good performers of the two-cluster solution into

two subgroups. One group (upward pointing triangles) behave as “one-trial Bayesians”: they
perform relatively well but use only the current data pattern to make their decisions. The other
group (downward pointing triangles) approaches optimal Bayesian performance. Note that all
three groups are distinguished by qualitatively different parameter settings: the bottom group
shows both parametersγ andδ equal to 0, the top group shows both parameters clearly much
greater than 1, while the middle (“one-trial Bayesian”) group shows a sensitivityγ significantly
above 1 but a memory persistenceδ equal to 0.

4.5.4. Lab data, three clusters
By applying the clustering technique to a different group of participants tested under lab

conditions, we can check the robustness of both the experimental results and the model-based
analysis. We analyzed only the first 20 (out of 40) blocks from the lab data, for direct com-
parability with the web data. The same three qualitatively distinct clusters of inference were
found, with very similar parameter values.
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4.6. Discussion

Through a model-based clustering analysis of participants’ data, we identified three distinct
causal inference strategies that people appear to use. The strategies may all be thought of in
terms of rational inference, but under qualitatively different representational and processing
constraints. The best performers integrate information across trials (δ � 0) and reliably make
the optimal decision as dictated by the likelihood ratio (γ � 0). The worst performers have
both of these parameters at or near zero. An intermediate group—the one-trial Bayesians—
are reliably sensitive to the likelihood ratio (γ � 0) but do not integrate information across
trials (δ = 0). Thus, we can conclude that most people are to some degree able to distinguish
different causal structures on the basis of just a few observed data patterns, and that at least
some untutored people are able to perform this task almost optimally. In the next experiment,
we will further probe people’s causal reasoning mechanisms with an expanded set of causal
networks.

The clustering analysis requires that the number of clusters be specifieda priori, raising the
question of how to choose the appropriate number of clusters for the analysis. The bimodality
of the overall accuracy distribution strongly suggests that at least two clusters are necessary. By
adding a third cluster, we were able to further distinguish between two groups of participants
that appeared to perform in qualitatively different ways. Regardless of the random initializa-
tion conditions, qualitatively similar results were obtained. However, when four clusters were
used, many different clustering solutions were obtained depending on the initialization, and
no additional qualitatively different patterns of performance emerged. Thus, a three-cluster
decomposition seems to provide the clearest insight into the different ways that people may
approach this task.

For the lab participants, there was some indication that performance improved during the
course of the experiment (Fig. 5, bottom row). Such a learning effect is interesting because it
has occurred in the absence of feedback about the correct answer. This unsupervised learning
may be explained in terms of some kind of adaptation to the statistics of the data patterns,
or as a re-evaluation of the weight of evidence provided by different data patterns in favor
of alternative causal hypotheses. Without any unsupervised learning mechanism, the model
we described above does not predict this learning effect. We have developed extensions of
the model that do incorporate such learning mechanisms, but for reasons of space, we present
here only the simplest version of the model that allows us to pick out individuals’ causal
inference mechanisms. These learning processes may be a crucial component of real-world
causal inference and should be explored more thoroughly in future work.

5. Experiment 2

Participants in Experiment 1 showed reasonable success at inferring causal structure from
purely passive observational data. Yet performance for many participants was far from optimal,
and the task was relatively simple, with only two possible causal models to consider. In Exper-
iment 2, we compared this passive mode of causal inference based on pure observations with
active learning, in which variables come under the learner’s experimental control. Participants
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reported their beliefs about causal structure twice for every network: once after seeing a round
of passive observation trials, and then again after seeing a round of intervention trials, in which
one variable that they chose was clamped to a distinctive value and they could observe the
effects on other variables in the system. This method enabled us to analyze both the relative
efficiencies of inference under passive observation and active intervention conditions, as well
as the specific impact of seeing the results of one’s own intervention on revising a causal
hypothesis.

We also enlarged the set of alternative causal models to include all 18 networks shown
in Fig. 2, and we allowed participants to describe their causal hypotheses by a free response
method—drawing a network with a mouse—rather than selecting from just two given choices.

Based on observational trials alone, it is impossible to distinguish networks within the
same Markov equivalence class (grouped by dashed lines inFig. 2). But when learners are
allowed to intervene, the networks within an equivalence class may become statistically distin-
guishable. As explained earlier, the degree to which an intervention allows one to distinguish
Markov-equivalent networks depends upon the choice of intervention. For all networks in
Fig. 2, a single intervention following a round of pure observation trials may be sufficient
to identify the true network generating the data, but only if that intervention is well chosen.
By allowing participants to choose only a single intervention, we could assess how well they
understood the informational value of different choices.

As in Experiment 1, we used the alien mind-reading cover story. The interventions in this
experiment are ideal interventions—the manipulation screens off any other causal influences—
and were instantiated in the cover story by a special machine (the “mind zapper”) that could
control a single alien’s thoughts and force it to think the word “ZZZ.”Fig. 6 illustrates the
experimental set-up: following a round of 10 passive observation trials, a participant hypothe-
sizes a certain causal structure (Fig. 6A); then, the participant chooses one alien as the target
of the mind zapper and observes the results of 10 more trials while the mind zapper is in place
(Fig. 6B). The word “ZZZ” was chosen to be maximally distinct from the normal vocabulary

Fig. 6. Illustration of two phases in Experiment 2. (A) In Phase 2 (and then again in Phase 5), participants indicated
their hypothesized causal network by clicking arrows onscreen with the mouse. (B) On intervention trials (Phase
4) the “mind zapper” is applied to one alien chosen by participant, fixing the word “ZZZ” in its mind. Observing
how that thought propagates to other nodes of the network allows participants to infer the hidden causal structure.
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of the aliens, to highlight its role in the observed communication patterns. Once an alien is
forced to think about “ZZZ,” the same rules for thought transmission apply as in Experiment
1. For instance, inFig. 6B, the mind zapper is applied toB and the result is that both aliensA
andB are thinking about “ZZZ.” These data imply a causal connection fromB to A, but do not
rule out other possible connections. The network structure inFig. 6A is still a possibility—it
could be thatC failed to read the mind ofA by chance. Additional trials might clarify whether
a connection exists betweenA andC.

5.1. Modeling intervention choice by active learning

We modeled participants’ intervention choices within an active learning framework (Murphy,
2001; Tong & Koller, 2001), where learners choose interventions that are expected to provide
maximal information about the underlying causal structure. Letg index the possible graphs,D
denote all past observational data (on which the intervention decision will be based),a denote
the intervention action, andy denote the possible outcomes that could be observed following
the intervention. An intervention that maximizes information gained about the true graph is
equivalent to one that minimizes the learner’s uncertaintyH about the true graph following the
interventiona,

H(a) = −
∑
g

Ps(g|y, a) logPs(g|y, a), (6)

wherePs(g|y, a) denotes the learner’s distribution of belief over possible graph structuresg
after taking actiona and observing the resulting datay. The subscripts indicates that this is a
subjective distribution, reflecting the learner’s beliefs without making a commitment to how
they are derived. Since we do not know what outcomey will occur prior to choosing actiona,
we can only minimize the expected value ofH over ally:

〈H(a)〉 = −
∑
y

Ps(y|a)
∑
g

Ps(g|y, a) logPs(g|y, a). (7)

We computePs(y|a) as

Ps(y|a) =
∑
g

Ps(y|g, a)Ps(g|a) =
∑
g

P (y|g, a)Ps(g), (8)

where in the second step we have dropped the conditioning ona in Ps(g) because this quantity
reflects the learner’s beliefs prior to taking actiona, and we have dropped the subscripts from
P(y|g, a) under the assumption that the learner uses the objective likelihoods (with knowledge
of the true values for parametersα and n). From Bayes’ rule, we then havePs(g|y, a) =
P(y|g, a)Ps(g)/Ps(y|a).

Under this analysis, intervention choice is determined strictly by the combination of objective
likelihoodsP(y|g, a), which are a fixed aspect of the task, andPs(g), the learner’s subjective
distribution of beliefs over graph structures prior to taking actiona. Applying this analysis
requires making choices aboutPs(g), because we do not observe this quantity directly in our
experimental task; we know only the one hypothesis that participants select (out of 18) as their
best guess after the passive observation phase of the task.
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The most obvious choice forPs(g) is to set it equal to the Bayesian posteriorP(g|D), reflecting
the ideal learner’s belief distribution given the dataD from the passive observation phase. We
will refer to this version as therational identification model, because it picks the intervention
that is most likely to identify the true causal structure out of all logically possible structures,
based on the optimal integration of passive observation and active intervention data. In general,
the ideal posteriorP(g|D) will be spread across all structures in the same Markov equivalence
class as the true structure. Thus, minimizing〈H(a)〉 under the assumptionPs(g) = P(g|D)
will select an intervention that optimally discriminates members of the same Markov class, as
illustrated inFig. 3.

There are several reasons why a different choice ofPs(g) might be more psychologically
plausible. First, it may not be computationally feasible for people—or any learning machine—
to compute the full Bayesian posterior over all logically possible hypotheses. Some approxima-
tion may be necessary. Second, once participants have chosen a single hypothesis based on their
passive observations, their goal in choosing an active intervention may switch from identifying
the true structure to testing their chosen hypothesis. We will consider severalrational test mod-
els, in whichPs(g) is determined by assigning most of the probability mass to the participant’s
chosen hypothesis and the remainder to a small set of simpler alternatives. These strategies
may not always lead to the true structure, but they do test particular causal hypotheses in a
rational way. They are also much more computationally tractable. Rather than summing over
all possible graph structures inEqs. (7) and (8), rational tests restrict those sums to only a small
number of structures that receive non-zero probability under the subjectively definedPs(g).

The ideal learner always picks the interventiona that minimizes〈H(a)〉. We generalize
this strategy to a psychologically more plausible choice rule, where actiona is chosen with
probability

P(a) = exp(−β〈H(a)〉)∑
iexp(−β〈H(i)〉) , (9)

andβ is a scaling parameter. The sum in the denominator ofEq. (9)ranges over all possible
intervention actions. At one extreme (β = ∞), choices always minimize〈H(a)〉; at the other
extreme (β = 0), choices are random. In all our simulations, we setβ = 12, yielding almost
all-or-none behavior except when differences in〈H(a)〉 are very small.

5.2. Method

5.2.1. Participants
Twenty-one undergraduates from Indiana University participated. An additional 102 subjects

participated via the world-wide web.

5.2.2. Procedure
Instructions were similar to those in Experiment 1, only participants were now introduced to

all 18 causal structures inFig. 2that could generate the data. Participants could view a schematic
of these 18 possible structures for reference at any time during the experiment. Participants
were given careful instructions on how to draw candidate network structures, how to interpret
the directionality of arrows, and how to use the mind zapper intervention tool. Pretests ensured



472 M. Steyvers et al. / Cognitive Science 27 (2003) 453–489

participants understood all these elements prior to the experiment. As in Experiment 1, the
probabilityα of copying correctly was set to 0.8, while vocabulary sizen was increased to 40
to enhance the discriminability of alternative networks.

The experiment consisted of 8 or 16 blocks of trials for web or lab participants, respectively.
On each block, one causal model generated the data. This causal model was randomly selected
by first choosing from four types of networks shown inFig. 2(common-effect, common-cause,
chain or one-link), and then choosing randomly within that type. Each network type occurred
equally often over the course of the experiment.

Each block consisted of six phases. In Phase 1, participants were shown 10 self-paced ob-
servational trials randomly generated by the causal model. The words were shown in thought
balloons and also listed in a separate text window that maintained a record of all trials, to
minimize memory demands. In Phase 2, participants chose the single causal network from
those shown inFig. 2 that best explained their observations. They indicated their hypothe-
sis by clicking arrows on screen with the mouse (Fig. 6A). In Phase 3, participants picked
a single node as the target of an intervention. In Phase 4, 10 randomly generated trials
were shown from the same causal model, with the mind zapper applied to the chosen alien
(Fig. 6B). In Phase 5, participants again drew a single causal network representing their best
guess following the intervention trials. In Phase 6, feedback was provided to motivate par-
ticipants. If they had drawn an incorrect network in Phase 5, the correct structure was now
given.

5.3. Results

5.3.1. Accuracy of causal inference
We classified a causal network hypothesis as correct only if it matched exactly the generating

causal network. Thus, an answer can still be scored as incorrect if it falls into the correct
equivalence class, and is therefore indistinguishable from the correct answer even to an ideal
learner. This scoring method was chosen in order to assess the accuracy of inferences before
intervention (Phase 2) and after intervention (Phase 5) on the same scale.

Before intervention, the mean frequency of correct causal inferences was 18% for both
web and lab participants. For comparison, the average score of an ideal learner (assuming
knowledge ofα andn) would be 50% correct. The distribution of scores over participants is
shown inFig. 7 (filled circles). Performance ranges widely, but overall people perform much
better than chance (5.6%), indicated by dashed lines. Even with just a few observations and
a large number of potential causal networks, people are still able to make meaningful causal
inferences.

After intervention, mean percent correct scores increased to 33% and 34% for the web
and lab participants, respectively. SeeFig. 7 (open circles) for the full distribution of scores.
Again, chance performance is 5.6%, but optimal performance can now be calculated in sev-
eral ways. An ideal learner who always chooses the most informative intervention and in-
tegrates data from all trials would obtain a score of 100%. However, people do not
always choose the most informative intervention, nor are they likely to remember the pas-
sive observation data (Phase 1) as well as the intervention data (Phase 4). Optimal per-
formance based on participants’ actual intervention choices would be 85% (on average), if
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Fig. 7. Distribution of participants’ probabilities of choosing the correct causal model in Experiment 2, both before
the opportunity to make an intervention (Phase 2) and after seeing the results of their interventions (Phase 5). Dashed
lines indicates chance performance (5.6%).

both passive observation and intervention trials are remembered perfectly and integrated, or
53% (on average), if only the intervention data are taken into account in making this final
decision.

An analysis of individual participants’ choices shows that most people’s causal inferences
improved following the opportunity to make an intervention relative to their inferences based
only on passive observation. Of the web participants, 63 improved in average accuracy follow-
ing the intervention, 10 became worse, and 29 showed no difference. Of the lab participants,
15 improved, 3 became worse, and 3 showed no difference.

5.3.2. Choice of interventions
Fig. 8shows the distribution of intervention choices averaged over participants, for both web

and lab participants. Choices are conditioned on the type of network selected by the participant
after the observational trials, in the previous phase of the experiment. This conditioning allows
us to assess how people’s intervention choices relate to their hypotheses about causal structure,
and the extent to which the interventions serve to test or refine those hypotheses. Choices are
classified according to the qualitatively distinct node types in each structure. For instance, given
a chain hypothesisA→ B → C, there are three qualitatively different choices for intervention:
the source nodeA, the mediating nodeB, or the sink nodeC. But given a common-effect
hypothesis,A → B ← C, there are only two distinct choices: a source nodeA or C, or the
sink nodeB.

To help interpret the behavioral results, the third row ofFig. 8 shows the predictions of a
random choice model, in which nodes are chosen completely at random. Note that because
the common-effect network has two source nodes and one sink node, a random choice strat-
egy would generate twice as many interventions on source nodes as on sink nodes given
this hypothesis. That random pattern is close to the average choices of participants given a
common-effect hypothesis. For all other hypothesis types, people’s intervention choices were
significantly different from random, with a clear preference for source nodes over sink nodes.
Next, we investigate whether this non-random pattern of results can be predicted by rational
choice models for active learning of causal structure.
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5.3.3. Active learning—rational identification model
The fourth row ofFig. 8 shows the predicted results of the rational choice model where

the probability distributionPs(g) = P(g|D), the full Bayesian posterior calculated based

Fig. 8. Distributions of intervention targets chosen in Experiment 2. Intervention choices are conditioned on the
type of network selected by a participant in the previous phase, based on passive observations, and classified
into topologically distinct node types (source, sink, mediator, or disconnected). The bottom four rows show the
predictions of various models explained in the main text. Error bars reflect standard errors.
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on all observational trials and assuming perfect knowledge ofα andn. This model chooses
interventions that, when combined with the passive observation data, are most likely to identify
the true causal structure.1 Predictions are similar to people’s choices for common-cause and
common-effect networks but are significantly different for the chain and one-link models.
There is a crucial difference between these last two cases. People’s preference to intervene
on the source node given a chain hypothesis is clearly sub-optimal. As illustrated inFig. 3,
choosing the mediating node would be more effective for distinguishing the true structure from
alternatives in the same Markov equivalence class. In contrast, people’s source preference given
a one-link hypothesis is not sub-optimal. It is a kind of bias, because in this case either a source
or sink intervention would be equally diagnostic from the standpoint of rational identification.
But it is in no way detrimental to successful inference, and in fact represents the most useful
intervention people could make here.

In sum, people’s source preferences for intervention generally serve the purposes of ra-
tional causal inference in this domain, although they are not always predicted by the ideal
active learning model, and they can lead to sub-optimal tests in the case of chain-structured
hypotheses. We next looked at whether people’s intervention choices might be better explained
in terms of active learning with a subjective belief distributionPs(g), defined in terms of the
hypotheses that participants report in the previous phase of the experiment based on the passive
observation data. Theserational testmodels test the current best hypothesis against a small
set of alternatives—in contrast to the ideal learner’s choice of intervention which attempts to
identify the true causal structure from amongst all logically possible structures.

5.3.4. Active learning—rational test model (1)
Perhaps the most basic kind of rational test model assumes that participants aim to test their

hypothesized network structure against a “null hypothesis” of complete independence, or no
causal structure:A → B → C. While this independence structure never actually occurs in
our experiments, it certainly occurs in many real-world situations and may be plausible as
a general-purpose null hypothesis for causal learning. To simulate this model, we assigned
all of the probability mass inPs(g) to just two structures: the networkh∗ that a participant
chose after seeing the passive observation data (Phase 2) and the networkh0 with no causal
connections. The ratioθ of probability assigned toh∗ versush0 was set toθ = 20, indicating a
much stronger causal belief in the selected network over the hypothesis of complete indepen-
dence. The model was simulated once for each participant and each block of trials, using the
appropriate hypothesish∗ chosen by that participant on that block. Thus, we can compare the
distribution of participants’ choices (Fig. 8) directly to the distribution of model choices for
each network type (aggregated across simulated participants and blocks).

In a further step towards psychological plausibility, we assume that subjects attend only to
whether each node shows the distinctive output of the mind zapper, “ZZZ,” rather than to the
precise pattern of words across all three alien minds. For instance, if a subject intervenes on
nodeA, there would be four distinct kinds of observations possible, depending on whetherB,
C, neither, or both also show the word “ZZZ.”

The predictions of this active learning model come much closer to the distributions of
people’s choices (Fig. 8, fifth row). The model predicts a source preference for testing common-
effect, common-cause, and one-link hypotheses. It also predicts a source preference for testing
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chain hypotheses, although the numerical effect is not large. This model’s source preference
can be explained intuitively. If the null hypothesis of complete independenceh0 is true, any
intervention should have the same effect: the target alien will think “ZZZ” and most likely no
other alien will. The more aliens who think “ZZZ” in a data pattern, the lower the likelihood
of seeing that pattern underh0. If the hypothesized causal structureh∗ is true, intervening on
a source node would (for all structures in our task) be most likely to force as many aliens as
possible to think “ZZZ”—thereby producing a data pattern which is maximally unexpected
under the alternative hypothesis and most diagnostic of the causal structureh∗.

5.3.5. Active learning—rational test model (2)
The final model we explore provides a compromise between considering all logically possi-

ble hypotheses and considering only a single null hypothesis of complete independence. Here
we assume that learners test their currently favored network hypothesish∗ against all of its
sub-networks—those networks with strictly less causal structure. For example, if the learner’s
current hypothesis corresponds to the chainA → B → C, that hypothesis would be con-
trasted withA → B C, A B → C, as well as the hypothesis of complete independence,
A B C. Intuitively, this strategy may be seen as attempt to test simultaneously the efficacy
of all hypothesized causal links, without worrying about whether additional causal structure
might exist. The same parameter settingθ = 20 now controls the relative probability assigned
in Ps(g) to the current hypothesish∗ versus the union of all alternative (sub-network) hypothe-
ses, each weighted equally. As shown in the bottom row ofFig. 8, this model comes closest to
explaining the preference gradient observed for the chain model, with a substantial preference
for the source node over the mediating node, as well as a preference for the mediating node
over the sink node.

5.3.6. Model fits
The random, rational identification, rational test (1), and rational test (2) models explain

3%, 11%, 93%, and 93%, respectively, of the variance in the web data, calculated at the level
of individual trials. Similarly, these models capture 14%, 11%, 96%, and 85%, respectively,
of the variance for the lab data. We do not have sufficient data to quantitatively distinguish the
two rational test models.

5.4. Discussion

Our results directly support two conclusions about the role of interventions in causal infer-
ence. First, people are more successful at inferring the structure of causal networks after they
have had the opportunity to intervene actively on the system and observe the effects, relative to
when they have just been exposed passively to pure observations. Second, people’s interven-
tion choices can be understood within a rational information-theoretic framework for active
learning, in which targets are chosen in proportion to how much information about network
structure they can be expected to yield.

The extent to which people’s causal inferences approach optimality is a more complex
issue. The ideal causal learner, who makes intervention choices by considering all logically
possible causal structures and final decisions by integrating all observational and interventional
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data according to Bayes’ rule, would obtain substantially higher accuracy rates and qualita-
tively different intervention choices than participants in our study. Yet there is evidence that
people do integrate knowledge gained across both observation and intervention trials. Any
learner who integrates information from both rounds of data within a block should improve in
accuracy—for the ideal learner, from 50% based on passive observation trials alone to 85%
based on a combination of observation and intervention trials—while even an ideal learner
who did not integrate across both rounds—who approached the intervention trials as if they
were a new block of trials—would show no such improvement based on the interventions
participants chose. Average performance on our task improved by almost 80% between pre-
and post-intervention responses, consistent with substantial integration of knowledge gained
from both passive observations and active interventions.

Modeling people’s intervention choices clarifies the ways in which these two sources of
knowledge might be integrated. Different models of intervention choice differ in the assump-
tions they make about people’s inferential goals and representational constraints. In the rational
identification model, the learner’s beliefs about the underlying graph structurePs(g) reflect the
full Bayesian posterior, and consequently interventions are optimal with respect to discriminat-
ing among members of the Markov equivalence class consistent with the passive observation
data. Under this model, data from passive observation and active interventions are integrated
on equal terms. However, people’s choices appear more consistent with one of the rational
test models, in whichPs(g) concentrates on the single favorite hypothesis indicated by a par-
ticipant, with some small weight allocated to alternative hypotheses with strictly less causal
structure. Under these models, passive observation and active intervention play different roles
in learning: observation suggests hypotheses, which are then tested through intervention.

The different goals of rational test and rational identification models—testing whether all
links in a hypothesized causal structure actually exist, versus attempting to pick out the full
causal structure from the sea of all logically possible alternatives—are not ultimately incompat-
ible. Adopting the “test” strategy as a tractable heuristic for causal identification is reminiscent
of an approach adopted by many scientists. First, based on observations of a system, make
the best possible guess at a strong hypothesis about how that system works. Then, through
deliberately chosen interventions, test that strong theory against “less interesting” alternatives
in which one or more causal components of the favored hypothesis do not exist, to see if each
hypothesized causal component is in fact necessary to explain the system’s behavior. Unlike
most scientists, participants in this experiment only had the opportunity to try a single inter-
vention. In future work, our active learning paradigm could be extended to study the more
general problem of how people plan a “program of research”—a series of interventions, in
which the choice of which intervention to perform next depends on the outcomes of previous
interventions.

6. Experiment 3

In the previous experiment, participants could indicate their causal beliefs by selecting
only a single hypothesis from the set of all possible causal networks. Experiment 3 used the
same procedures but allowed participants to select multiple hypotheses if they were uncertain.
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This change allows us to test directly people’s sensitivity to Markov equivalence classes, by
measuring the extent to which people select all and only those networks within an equivalence
class when the data lend equal support to the whole class. It also gives us more information
about people’s subjective distribution over graph structures,Ps(g), allowing us to investigate
the extent to which people choose interventions that optimally discriminate among multiple
hypotheses they have in mind.

6.1. Method

6.1.1. Participants
Twenty-nine undergraduate students from Indiana University participated. An additional 74

subjects participated via the world-wide web.

6.1.2. Procedure
The procedure used in this experiment was identical to Experiment 2, except for the following

differences. Both web and lab participants received 16 blocks of trials. In Phases 2 and 5 of
each block, instead of being asked to draw a single causal network, participants were shown a
grid of all 18 possible causal networks and instructed to check one or more networks that they
believed were consistent with the data seen up to that point. The final feedback phase of each
block was omitted.

6.2. Results

6.2.1. Accuracy of causal inference
We computed accuracy scores just as in Experiment 2, with the exception that whenm

networks were chosen and the correct generating network was among them, we controlled for
guessing by counting the score as only a fraction 1/m of a correct answer. Average percent
correct prior to intervention was 21% and 18% for web and lab participants, respectively, rising
to 36% and 30%, respectively, after the intervention trials.Fig. 9shows the full distributions
of scores. As in Experiment 2, the majority of participants improved after being given the
opportunity to intervene actively on the system.

Fig. 9. Distribution of participants’ probabilities of choosing the correct causal model in Experiment 3, both before
the opportunity to make an intervention (Phase 2) and after seeing the results of their interventions (Phase 5). Dashed
lines indicates chance performance (5.6%).
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6.2.2. Knowledge of equivalence classes
The matrices inFig. 10 show P(j|i)—the conditional probability of selecting a network

from Markov equivalence classj given that a network was also selected from Markov class
i—for all blocks on which a participant chose more than one hypothesis. Diagonal entries show
the probabilities of pairing a network with another from the same Markov class; off-diagonal
entries correspond to pairings across classes. Both web and lab participants appear to un-
derstand the one-link Markov equivalence classes: networks within those classes are often
grouped together and rarely grouped with networks in other classes. The singleton Markov
classes involving common-effect structures are also understood to some extent, although
this cannot be seen by comparing diagonal with off-diagonal entries inFig. 10, because
the diagonal entries are zero by definition for these singleton classes. Crucially, the proba-
bility of selecting multiple networks when one network had a common-effect structure was
only 20%, which is almost half the analogous probability (36%) for the other network types
taken together. This significant difference (p < .01, two-tailedt-test) suggests some under-
standing of the fact that each common-effect network belongs to its own equivalence class.
Participants have greater difficulty in distinguishing between the Markov classes involving
both common-cause and chain networks (columns 4–6). When one network was selected
within one of these classes, the other choice was just as likely to fall into any of these three
classes.

Fig. 10. Conditional probability of participants in Experiment 3 choosing a network from Markov equivalence class
j, given that they also chose a network from classi (and that they indicated more than one hypothesis). (A) Web
participants. (B) Lab participants. (C) Optimal Bayesian inference, as described in main text.
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6.2.3. Analyzing intervention choice
Fig. 11compares the intervention choices of participants with the predictions of the two

rational test models. The data are split into two conditionspost hoc, based on whether single
(m = 1) or multiple (m > 1) networks were selected after the observational trials. 60% of all
subjects chose multiple networks on at least one block. For those subjects, 53% of all blocks
resulted in a choice of multiple networks.

Results in the single-choice condition can be compared directly to Experiment 2 and show
essentially the same pattern. In the multiple-choice condition, we divided the counts over all the
different types of networks that were selected by participants. For example, if on a particular
block a participant selected both a common-cause hypothesis and a chain hypothesis, half of
the count for that participant’s subsequent intervention choice would go to the appropriate

Fig. 11. Distributions of intervention targets chosen by participants in Experiment 3, along with the two rational
test models. Results are analyzed separately for trials on which participants chose only a single network hypothesis
and trials on which they indicated multiple hypotheses.
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type of node (source, mediator, sink) in the common-cause distribution, and the other half
to the appropriate type of node (source, sink, unconnected) in the chain distribution. For
the rational test models, instead of a single peak in the probability distribution at a single
chosen network, the subjective distributionPs(g) was constructed withm equal peaks in the
distribution corresponding to them chosen networks. The parameterθ = 20 again controlled
the relative probability assigned to thesemfavored hypothesis versus the hypothesis of complete
independence (Model 1) or the union of all sub-networks of allmselected networks (Model 2).
These two models explained 88% and 91% of the variance, respectively, for web participants,
and 82% and 92% of the variance for lab participants, respectively, calculated at the level of
individual trials.

6.3. Discussion

Two principal findings emerged from the multiple-choice paradigm used in this experiment.
First, causal inference from observational data shows more sensitivity to Markov equivalence
classes based on one-link and common-effect structures than to those based on common-cause
and chain structures. An analysis of the statistical structure of our task suggests one possible
explanation for this difference. For all nine networks in the three Markov classes involving
common-cause and chain structures (columns 4–6 inFig. 10), a single data pattern—where
all three aliens think of the same word—is far more common than any alternative observation.
Thus, although these three Markov classes are in principle distinguishable purely from passive
observations, they are highly confusable given the particular causal mechanisms and the small
number of trials used in our task. In contrast, each of the other six Markov classes is clearly and
uniquely distinguishable based on its most common one or two data patterns.2 This argument
can be formalized by comparing people’s choice probabilities with those of an optimal Bayesian
causal learner constrained to choose the same number of hypotheses that participants did
(Fig. 10C).3 Like people, this ideal learner often selects multiple networks across Markov
class boundaries when hypothesizing common-cause and chain structures, but rarely when
hypothesizing one-link structures.

Our second finding was that when people indicate multiple hypotheses reflecting some
uncertainty about causal structure, they often choose subsequent interventions in an attempt
to maximally reduce that uncertainty. The close correspondence between human and model
choices in this experiment, using the same parameter values as in Experiment 2, further supports
the notion that people’s intervention choices may be explained as rational tests given their own
subjective beliefs about causal structure formed on the basis of passive observation.

Qualitatively, the rational test models appear to fit the data from web participants better
than the data from lab participants (except for them = 1 case with common-effect structures,
where choices of both people and models are essentially random). Both web participants and the
rational test models showed a source preference in every case except one: when attempting to
discriminate among multiple hypotheses containing at least one chain structure, both people and
the models preferred to intervene on mediating nodes. This exception suggests that the source
preference may not be fundamental, but rather may be a consequence of seeking out maximally
informative hypothesis tests. We are currently testing this proposal using more complex causal
networks in which the source preference and the predictions of rational test models may diverge.
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Lab participants did not show this reversal of the source preference, perhaps because they
employed less sophisticated strategies. Future work might profitably explore variations in
individual strategy on this task, as we did for the simpler two-alternative forced choice task of
Experiment 1.

7. General discussion

We have argued that the paradigm of rational statistical inference over graphical models
provides insight into multiple aspects of human causal learning: inference from purely ob-
servational data, active learning through interventions, as well as the link between these two
settings—how passive observations are used to guide interventions toward maximally infor-
mative targets. Previous research has investigated Bayesian models of causal inference in more
constrained settings (Anderson, 1990; Anderson & Sheu, 1995; Tenenbaum & Griffiths, 2001),
and other researchers have recently begun to study empirically people’s ability to learn causal
networks from observational and interventional data (Lagnado & Sloman, 2002; Schulz, 2001;
Sobel, 2003), but we believe our work is the first to draw together all these theoretical and
experimental threads.

7.1. Autonomous causal inference in adults

Lagnado and Sloman (2002)and Sobel (2003)both studied observational and interven-
tional learning, focusing on the differences between these two modes.Lagnado and
Sloman (2002)used networks of three variables connected via a chain structure and real-
istic cover scenarios. Participants completed 50 trials of either passive observation or ac-
tive intervention, in which they could freely choose a new intervention on each trial. As in
our studies, Lagnado and Sloman found an advantage for intervention over passive obser-
vation, but their participants’ overall accuracy scores were much lower. 30% of participants
in their intervention condition chose the correct structure out of five alternatives—not sig-
nificantly different from chance. In their observation condition, participants typically (over
60% of the time) chose an incorrect common-effect structure; fewer than 20% chose cor-
rectly. This poor performance was likely influenced by prior knowledge evoked by the realistic
cover scenarios, which suggested that there might be two potential causes for a common
effect.

In our experiments, the cover scenario was specifically chosen to avoid instilling any expec-
tations about the underlying causal structure. This design left our participants free to engage
data-driven learning mechanisms, which led to mean accuracy scores significantly higher than
chance in both our observation and intervention conditions—as much as six times higher in the
best intervention conditions. It also allowed us to model learning processes in detail without
the additional complexities of representing prior knowledge. More generally, human causal
inference often makes essential use of richly structured prior knowledge, asTenenbaum and
Griffiths (in press)have shown for several cases of inference from passive observations. Ex-
ploring the role of prior knowledge in guiding active learning from interventions is an important
area for future work.
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Sobel (2003)also adopted a cover scenario that did not favor any particular causal struc-
ture, and he also obtained accuracy scores substantially better than chance. Participants in
his intervention condition (Experiment 1) obtained an average of 66% correct when learn-
ing probabilistic structures. This score was more than three times the chance level (in a
five-alternative-forced-choice task), and much higher than the average score of 35% for partic-
ipants in his observation condition. Sobel’s studies differed from ours in several respects. He
allowed participants to make as many interventions as they desired—an average of approxi-
mately 40 per network (Sobel, personal communication)—while we allowed only one distinct
intervention, in order to study the mechanisms of intervention choice, and the interaction of
observational and interventional learning. Sobel did not address these issues; his focus was on
the relative accuracy of learning given identical data obtained by different means: intervention,
observation, or observation of another agent’s interventions.

Comparing final accuracy scores between our studies,Lagnado and Sloman (2002), and
Sobel (2003)is complicated by the fact that our participants were allowed to make only one
intervention per network, while participants in the latter two studies made far more distinct
interventions—enough to test each possible causal link multiple times. This constraint, com-
bined with our larger number of choice alternatives (18 vs. 5), may have accounted for the lower
absolute accuracy scores in our studies relative to Sobel’s. An alternative possibility is that our
task and scenario somehow present an unnatural domain for causal inference, which would
undermine our claim to have discovered something about how people learn successfully about
the structure of real-world systems. To rule out this possibility, we conducted two small-scale
studies identical to Experiment 2, except that participants could now choose a different target
for the mind zapper on each intervention trial. In one follow-up, 19 web participants were
given 10 distinct intervention trials on each block, obtaining an average final accuracy of 55%
correct. In another follow-up, 22 web participants were given 25 intervention trials on each
block, obtaining an average final accuracy of 72% correct. This performance, at least as strong
as that observed in other studies which presented participants with more data trials and fewer
choice alternatives, suggests that our task domain provides a reasonable model system for
studying the mechanisms of successful causal inference.

7.2. Children’s understanding of causal structure and the impact of interventions

Recent work of Gopnik and colleagues has shown that even young children can successfully
engage in causal learning, making inferences that appear normative from the standpoint of
causal graphical models (Gopnik & Sobel, 2000; Gopnik, Sobel, Schulz, & Glymour, 2001;
Gopnik et al., in press). Most relevantly,Schulz (2001 summarized in Gopnik et al., in press)
has shown that children and adults can infer causal structure by observing the interventions of
an experimenter. As in our studies and those ofSobel (2003), Schulz and Gopnik used a causally
neutral cover scenario, with the specific goal of removing temporal cues to causal order. An
important difference is that their participants did not choose which interventions to make, but
merely watched the experimenter as she demonstrated one or more interventions. Thus, their
results demonstrate people’s appreciation of the inferential relations between intervention and
causal structure, but they do not directly address the processes by which people often learn
about causal systems in the real world, through autonomous observation and intervention.
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7.3. Bayesian models of causal inference

None of the above studies of active causal inference has attempted to explicitly model
people’s inference processes, as we do here. There has been previous work on Bayesian models
of human causal inference (Anderson, 1990; Anderson & Sheu, 1995; Tenenbaum & Griffiths,
2001) in more constrained settings. Those models focused on inferences about individual
cause–effect relations, where it is cleara priori which variables are potential causes or effects
(see alsoBuehner et al., 2002; Cheng, 1997; Jenkins & Ward, 1965; Lober & Shanks, 2000;
Shanks, 1995). The task is typically to estimate the strength of these given causal connections,
or the probability that a given connection exists in a particular instance, rather than to infer
the structure of a network of interacting causes, as in our experiments, wherea priori any two
variables may be related as cause and effect. Also, previous Bayesian models have focused
on passive inferences from pure observation data, rather than inferences from a combination
of observation and intervention data, or the processes of selecting informative targets for
intervention, as we consider here. Establishing the applicability of rational statistical inference
models in these more complex and more general settings is an important step towards bringing
theories of human causal learning closer to the cases of greatest real-world interest.

7.4. Related work in other cognitive domains

Human inferences about causal networks have also been studied in the context of categoriza-
tion tasks (Rehder, 2002; Rehder & Hastie, 2001; Waldmann & Martignon, 1998; Waldmann,
Holyoak, & Fratianne, 1995). That work was also inspired by the framework of causal graphi-
cal models, but differs from our project in several ways. In the categorization literature, causal
relations are typically thought of as connecting static features of concepts, whereas in our
studies—as well as those ofLagnado and Sloman (2002), Sobel (2003), and Schulz and Gop-
nik (2001; Gopnik et al., in press)—causal relations connect events or state variables of a
dynamical system. Applications of graphical models in the categorization literature have pri-
marily focused on how knowledge of causal structure is used in categorization, rather than how
it is acquired—our focus here.

It is an open question whether the mechanisms for inferring causal structure in dynamical
systems that we and others have studied may also be engaged in learning the causal structure of
categories. One important difference is that the opportunity to make interventions is probably
not available in most natural settings of category learning. Given that interventional data can
be much more useful than purely passive observations in inferring the structure of a complex
network, we would expect that data-driven learning should not be an easy or typical route to
acquiring knowledge of causal category structure. In support of this prediction, a consistent
finding in the causal categorization studies of Rehder, Waldmann, and their colleagues is that
successful learning of causal structure depends crucially on explicitly providing learners with
the appropriate causal schema. Bottom-up inference of causal category structure with no prior
knowledge and only passive observations appears to be quite rare.

The goal of maximizing expected information gain, which drives our active learning model,
has also been invoked in rational explanations of active learning outside the domain of causality.
The first that we know of wasOaksford and Chater’s (1994)model ofWason’s (1968)selection
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task, involving reasoning about conditional rules. More recent areas of applications include
concept learning (Nelson et al., 2001), eye movements (Lee & Yu, 2000), and the development
of gaze following (Movellan & Watson, 2002). Those applications—with the exception of the
last, which has a causal underpinning—differ in an important way from ours. The role of active
inference in non-causal domains is typically restricted to selecting data; the goal is to make
inference more rapid or efficient by choosing which aspects of a problem to gather information
about first. Intervening on a causal system, in contrast, actually alters the data patterns that
can be observed. Not only does this have the potential to speed up learning, but it also allows
inferences to be made that would be impossible otherwise, such as distinguishing between
structures within the same Markov equivalence class.

One intriguing similarity between our active inference models and those ofOaksford and
Chater (1994)is that both involve choosing tests that optimally discriminate between a currently
favored hypothesis and a small set of “less interesting” alternatives—as opposed to the much
larger and computationally intractable space of all logically possible alternatives. InOaksford
and Chater’s (1994)model, rules of the form “Ifp thenq” are tested against the null hypothesis
thatp andq are independent. Similarly, in our rational test models, causal networks are tested
against the null hypothesis that all variables are independent, or against their sub-networks—
networks with strictly less causal structure. As discussed under Experiment 2, this strategy does
not always support optimally efficient identification of the true causal structure, but it appears
to perform well in practice. It also mirrors the most common approach to empirical discovery
followed in many scientific fields that deal with complex causal networks, such as psychology
or biology. It would be of great interest to establish more precisely the relation between the
intuitive and scientific versions of this strategy, and to analyze rigorously its efficiency as a
method for discovering the structure of complex systems.

7.5. Psychological correlates of rational causal inference

One final open question concerns the manner in which statistical algorithms for causal in-
ference might actually find their expression in human minds. Our models attempt to explain
people’s behavior in terms of approximations to rational statistical inference, but this account
does not require that people actually carry out these computations in their conscious thinking,
or even in some unconscious but explicit format. A plausible alternative is that people follow
simple heuristic strategies, which effectively compute similar outputs as our rational models
without the need for any sophisticated statistical calculations. For instance, in our first exper-
iment, one such heuristic would be to count the number of trials on which the three aliens all
think of the same word, and then to choose the common-cause model if and only if the aliens
agree on a majority of trials. This strategy comes close to optimal Bayesian performance, and
distinguishing between the two would not be easy. A similar heuristic for success in our later
experiments might select hypotheses on the basis of how well the observed data match up
with the one or two data patterns most commonly generated by each candidate network. As ex-
plained in the discussion of Experiment 3, such a strategy applied to our task would generally be
successful for inferring common-effect and one-link structures, but given small samples would
tend to confuse common-cause and chain structures across Markov class boundaries—just as
participants do in our experiments.
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For several reasons, we have focused our first efforts on analyses at the level of rational
computation rather than these questions of psychological implementation. Most importantly, a
rational analysis is necessary to explain how and when people can reliably infer causal structure
from different sources of data: pure observation, active interventions, or a combination of
the two. Also, the rational framework allows us to study the effects of various processing
constraints on the success of causal inference, and to motivate reasonable heuristic models. It
remains a priority for future work on causal inference to establish more explicit links between
the computational and psychological levels of analysis.

8. Conclusion

Faced with the challenge of inferring the structure of a complex causal network, and given
no prior expectations of what causes what, people bring to bear inferential techniques not
so different from those common in scientific practice. Given only passive observational data,
people attempt to infer a system’s underlying structure by comparing what data they see to
what they would expect to see most typically under alternative causal hypotheses. Given the
opportunity to learn actively from observing the effects of their own interventions on the system,
they make more accurate inferences. When constrained in the number of interventions they
can make, they choose targets that can be expected to provide the most diagnostic test of the
hypotheses they initially formed through passive observation.

The causal basis of this correlation between scientific and intuitive causal inference is not so
clear. Does science follow certain norms because it is essentially intuitive causal inference made
systematic and rigorous? Or do educated adults adopt more or less scientific ways of thinking
because they are explicitly or implicitly taught these norms in our culture? Temporal priority
favors the former, because even young children show an appreciation of the proper relations
between causal structure and observed data (Gopnik et al., in press), yet influences of culture
on causal reasoning are also well documented (Nisbett, Peng, Choi, & Norenzayan, 2001).
Perhaps, in addition, there is a hidden common cause. Scientists and everyday learners adopt
similar inferential techniques because these techniques provide computationally efficient and
effective means for learning about the structure of the world, and the selection pressures favoring
rapid and successful causal inference in both science and everyday life are too great to ignore.

Notes

1. For this rational identification model, intervention choices are shown conditional on the
type of network that received maximum posterior probabilityP(g|D) after the passive
observation phase. If multiple network types attained the maximum, the counts forP(a)
were calculated for each network separately and divided by the number of networks.

2. For each one-link class, almost all trials show the same thought for the two connected
aliens but a different thought for the third alien. For each common-effect class, almost
all trials show a thought shared by the sink (effect) node and either one or the other
source (cause) nodes, but not both.
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3. In order to compare this model directly with people’s choices, its selection process was
yoked to the choices of web participants. Whenever a participant selectedmnetworks on
a particular trial, the model selected themnetworks to which it assigned highest proba-
bility. Thus, the model was sometimes forced to select more networks that it otherwise
would with a maximum probability rule, crossing Markov class boundaries that would
otherwise not be crossed.
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