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Abstract

A theory of categorization is presented in which knowledge of causal relationships between category
features is represented in terms of asymmetric and probabilistic causal mechanisms. According to
causal-model theory, objects are classified as category members to the extent they are likely to have
been generated or produced by those mechanisms. The empirical results confirmed that participants
rated exemplars good category members to the extent their features manifested the expectations that
causal knowledge induces, such as correlations between feature pairs that are directly connected by
causal relationships. These expectations also included sensitivity to higher-order feature interactions that
emerge from the asymmetries inherent in causal relationships. Quantitative fits of causal-model theory
were superior to those obtained with extensions to traditional similarity-based models that represent
causal knowledge either as higher-order relational features or “prior exemplars” stored in memory.
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

One factor that has changed the study of human cognition over the last several decades is the
realization that the operation of many cognitive processes depends on the world knowledge that
a person possesses. Whereas psychologists traditionally have emulated the simple experiments
of physicists’ by stripping stimuli of their meaning to discover the “fundamental particles” of

� Portions of the empirical findings and the model fitting results were reported previously in a paper to the 2001
NIPS Conference.
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the psychological universe, many now investigate the meaningful explanations, interpretations,
understandings, and inferences that world knowledge affords and that characterize much of
our everyday mental activity. Sometimes referred to as thetheory-basedview of conceptual
representation, an emphasis on the importance of studying the knowledge that people bring
to bear to the task at hand now appears in numerous research domains including memory
(Bartlett, 1932; Bransford, Barclay, & Franks, 1972), problem solving (Gentner, 1983), lan-
guage comprehension (Kintsch, 1988), expertise (Chase & Simon, 1973; Chi, Feltovich, &
Glaser, 1981), categorization (Murphy & Medin, 1985; Wisniewski & Medin, 1994), judg-
ment (Nisbett & Ross, 1980), learning (Chi, Bassok, Lewis, Reimann, & Glaser, 1989), and
cognitive development (Carey, 1985; Gopnik & Meltzoff, 1998; Karmiloff-Smith & Inhelder,
1975; Keil, 1989).

Prior research into the nature of people’s intuitive theories suggests that these theories are
composed of a number of different types of beliefs. For example, researchers have argued that
people’s folk theories include ontological beliefs about the types of entities in the world (Chi,
1993; Keil, 1979; Wellman & Gelman, 1992). Carey (1985, 1995)has stressed the distinc-
tive nature of the beliefs involving intentional agents that make people’s “naive psychology.”
Finally, Keil (1995) has proposed that teleological beliefs about the purpose served by var-
ious objects and their properties is another fundamental way in which people conceive the
world. However, according to many researchers intuitive theories largely consist of beliefs
aboutcausalrelations (Carey, 1995; Gelman, Coley, & Gottfried, 1994; Gopnik & Wellman,
1994; Keil, 1989; Murphy & Medin, 1985). The special status granted causal knowledge is
unsurprising in light of its distinct functional advantages. It is an ability to represent causal
regularities that enables an organism to successfully intervene in external events and attain
control over its environment (Sperber, Premack, & Premack, 1995).

This article is concerned with the nature of people’s intuitive theories about categories of
everyday objects, especially within-category knowledge about the causal relationships that
link objects’ features. Previous research has provided direct evidence that people’s knowledge
of categories is more extensive than a simple “list of features.” For example,Ahn (1998)
demonstrated that undergraduates possess extensive causal knowledge about natural categories
by having them rate the strength of causal connections between features (e.g., they produced
high ratings for “goats give milk because of their genetic code” but low ratings for “goats give
milk because they have four legs”) (also seeSloman, Love, & Ahn, 1998). Moreover, previous
research has also shown that causal knowledge influences the classification of objects. For
example, ever since Rosch’s emphasis on the importance of the family resemblance structure
of natural categories, it has been assumed that the features of a category vary regarding their
importance, orweight, for categorization (Hampton, 1979; Rosch, 1973; Rosch & Mervis,
1975; Smith & Medin, 1981), and an aim of categorization research has been to understand
those factors that make features more or less important to establishing category membership. In
fact, research has established a number of robust empirical generalizations regarding how the
importance of a feature changes as a function of its position in a network of causal relationships.
For example, one generalization is that a feature will become more important to the extent it
is more deeply embedded in a causal network of inter-related features (Ahn, 1998; Ahn, Kim,
Lassaline, & Dennis, 2000; Rehder, in press; Sloman et al., 1998). Another is that a feature
will become more important to the extent it has many causes (Rehder & Hastie, 2001).
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Although these findings advance our understanding of the effects of folk theories on classi-
fication, there are good reasons for believing that these effects are likely to be more extensive
than merely affecting the importance of individual features. After all, the primary role of the-
ories is to inter-relate their constituent features, and hence one might expect that the role that
an individual feature plays in establishing category membership will depend on how that fea-
ture relates to the other features an object has. In other words, theories might make certain
combinationsof features either sensible and coherent (and other combinations insensible and
incoherent) in light of the relations linking them, and the degree of coherence of a set of features
might be an important factor determining membership in a category. For example, most adults
not only know that typical birds are small, have wings, fly, and build nests in trees, they also
know that birds build nests in treesbecausethey can fly, and they flybecausethey have a wing
size appropriate to their size. In light of this knowledge, a small winged animal that doesn’t fly
and yet still builds nests in trees might be considered a less plausible bird (how did the nest get
into the tree?) than a large winged animal that doesn’t fly and builds nests on the ground (e.g.,
an ostrich), even though the former animal has more features that are typical of birds (three)
than the latter (one).

Prior research supports the intuition that an important role of categorizer’s prior knowl-
edge is to make particular combinations of features more or less acceptable to category
membership. For example,Malt and Smith (1984)found that members of natural categories
were seen as more typical when they possessed pairs of correlated properties that were ei-
ther especially salient or occurred in “functional combinations” (e.g., a large bird requires
large wings to fly) [but also seeAhn, March, Luhmann, & Lee, 2002]. Rehder (in press)
found that combinations of features that violated a category’s causal knowledge (i.e., cause
feature absent and effect feature present or vice versa) led to lower category membership
ratings (also seeRehder & Hastie, 2001). Wisniewski (1995)reported that certain objects
were better examples of the category “captures animals” when they possessed combinations
of features that were useful (e.g., “contains peanuts” and “caught an elephant”) as com-
pared to when they did not (“contains acorns” and “caught an elephant”). Finally,Rehder
and Ross (2001)showed that objects were considered good examples of a category of pol-
lution cleaning devices when they possessed a gathering instrument that was appropriate
to the type of pollution being gathered (e.g., “has a metal pole with a sharpened
end” and “works to gather discarded paper”) but not otherwise (“has a magnet” and “removes
mosquitoes”).

Despite these demonstrations of the influence of theoretical knowledge on categorization,
there have been few attempts to formalize the nature of the causal beliefs that largely make
up those theories. One exception iscausal-model theory(Rehder, 1999, in press; Waldmann,
Holyoak, & Fratianne, 1995). According to causal-model theory, people’s intuitive theories
about categories of objects consist of a model of the category in which both a category’s features
and the causal mechanisms among those features are explicitly represented. Applied to the bird
example above, the claim is that most people’s knowledge of birds includes features (wings,
small, flies, nests in trees, etc.) interconnected with causal mechanisms (nests in trees because
of flight, flight because of wings, and so on). Importantly, causal relations interconnecting
features are assumed to be asymmetrical such that one feature (e.g., wings) causes another
(e.g., flight) but not vice versa.
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According to causal-model theory, people’s causal models of categories influence their
classification behavior by leading them to expect certain distributions of features in category
members. Specifically, a to-be-classified object is considered a category member to the extent
that its features were likely to have beengeneratedby the category’s causal laws, such that
combinations of features that are likely to be produced by a category’s causal mechanisms are
viewed as good category members and those unlikely to be produced by those mechanisms are
viewed as poor category members. For example, when two features of a category are believed
to be linked by a causal mechanism, those two features will be expected to be correlated with
one another—the two features will tend to be both present or both absent in category members.
As a result, causal-model theory will assign a low degree of category membership to objects
that have many broken feature correlations (i.e., cases where causes are present but effects
absent or vice versa). Objects that have many preserved correlations (i.e., causes and effects
both present or both absent) will receive a higher degree of category membership because it is
just such objects that are likely to be generated by causal laws.

Causal-model theory’s predictions that categorizers are sensitive to pairwise correlations be-
tween features directly-connected by causal relationships distinguishes it from many existing
accounts that consider only the effect knowledge has on the importance of individual features
to categorization. However, sensitivity to such pairwise correlations is just one consequence of
the claim that categorizers favor those combinations of features that are expected to be gener-
ated by a category’s causal laws. To illustrate, consider the causal networks presented inFig. 1.
In thecommon-cause schema, one category feature (F1) is described as causing the three other
features (F2, F3, and F4). In thecommon-effect schemaone feature (F4) is described as being
caused by each of the three other features (F1, F2, and F3). On the one hand, these schemas
are analogs of one another if one ignores the direction of causality. On the other hand, because
of the asymmetries inherent in causal relationships the two causal networks shown inFig. 1
are each expected to generate populations of category members with distinctive distributions
of features. Although both schemas imply that causes will be correlated with effects (i.e., the
common-cause will be correlated with its effects, and the common-effect will be correlated with
its causes), the common-cause network also implies that the three effect attributes will be corre-
lated (because of their common-cause). In contrast, the common-effect schema doesnot imply
that the three cause attributes will be correlated. This disanalogy between the pattern of pairwise
correlations between features is presented inFig. 2, and can be illustrated with the following ex-
ample: Three symptoms caused by a disease (a common-cause network) will be expected to be
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Fig. 1. The common-cause and common-effect causal schemas.
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Fig. 2. Feature correlations associated with the common-cause and common-effect causal schemas.

correlated across a population in which the disease is possessed by a subpopulation. In contrast,
three independent causes of the disease (a common-effect network) are just that, independent
(i.e., uncorrelated). This asymmetry between common-cause and common-effect networks has
been the focus of considerable investigation in both the philosophical and psychological lit-
eratures (Reichenbach, 1956; Salmon, 1984; Waldmann & Holyoak, 1992; Waldmann et al.,
1995).

Nevertheless, there are conditions under which common effect networks will also exhibit
statistical structure among category features in addition to pairwise correlations between
causally-connected features. Consider the informal description of the higher-order interactions
that may hold among features arranged in a common-effect pattern which follows (a more for-
mal description is presented later in this article). First, when the common effect feature F4 is
present in an object, that object will be a better category member if a cause feature (say, F1) is
also present, because the presence of F1 means that the expected correlation between F1 and F4

is preserved. However, the importance of F1 being present is also likely to depend on whether
other causes (F2 and F3) are already present—in particular, the presence of F1 is likely to be
less important when there is already one cause present to “explain” the presence of F4. In other
words, a common-effect network predicts higher-order interactions between features such that
the influence of the presence a cause feature depends on both the presence of the common
effect and its other potential causes, reflecting the diminishing marginal returns associated
with explaining an effect that is already adequately explained. The higher-order interactions
associated with a common-effect network are related to the normative behavior of discounting
for the case of multiple sufficient causation during causal attribution (Morris & Larrick, 1995).
Note that these predictions for common-effect networks distinguishes the current proposal
from the account presented byWaldmann et al. (1995)who suggest that higher-order structure
is absent in common-effect networks. However, their analysis is based on continuous variables
and structural equation modeling, and I will demonstrate below how analysis based on discrete
variables (e.g., binary category features), indeed predicts the higher-order correlations among
common-effect features just described.

The goal of this article is to test causal-model theory’s predictions regarding the influence of
causal knowledge on judgments of category membership. To this end, undergraduate partici-
pants were instructed on categories whose four binary features exhibited either a common-cause
or a common-effect schema.Table 1presents an example of the features and common cause
causal relationships for one of the novel categories used in this study, Lake Victoria Shrimp.
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Table 1
Features and common cause causal relationships for the Lake Victoria Shrimp experimental category

Features

F1 High amounts of ACh neurotransmitter
F2 Long-lasting flight response
F3 Accelerated sleep cycle
F4 High body weight

Causal relationships
F1 → F2 A high quantity of the ACh neurotransmitter causes a long-lasting flight response. The duration

of the electrical signal to the muscles is longer because of the excess amount of neurotransmitter
F1 → F3 A high quantity of the ACh neurotransmitter causes an accelerated sleep cycle. The

neurotransmitter speeds up all neural activity, including the internal “clock” which puts the
shrimp to sleep on a regular cycle.

F1 → F4 A high quantity of the ACh neurotransmitter causes a high body weight. The neurotransmitter
stimulates greater feeding behavior, which results in more food ingestion and more body weight.

After learning about either a common-cause or common-effect category, categorization ratings
were gathered from experimental participants. To determine participants’ sensitivity to fea-
tures, pairs of features, and higher-order interactions between features, multiple-regressions
were performed on these ratings. If categorizers are insensitive to causal asymmetries, the
common-cause and common-effect schemas should result in analogous classification behavior
because these schemas are analogs of one another if one ignores the direction of causality.
On the other hand, if categorizers are sensitive to the pattern of data generated by causal re-
lations their categorization performance should exhibit a disanalogy between common-cause
and common-effect schemas, a disanalogy that arises from the inherent asymmetries in causal
relationships—that causes generate their effects but not vice versa.

The following experiment will demonstrates that, as predicted by causal-model theory,
categorizers are sensitive to whether to-be-classified exemplars preserve or break the pairwise
and higher-order inter-feature correlations that are expected to inhere in a population of category
members. Moreover, beside confirming these predictions of causal-model theory in qualitative
terms, in the following section I present a formal definition of causal-model theory and show
that the theory also provides a good quantitative account of categorization performance.

Although causal-model theory will be shown to provide a sufficient account of categorization
performance, it is also important to consider whether such performance can be accounted for by
extensions to more traditional models such as similarity-based prototype and exemplar models.
Although similarity-based models have been shown to characterize categorization behavior in
numerous experimental studies over the last several decades, these models were not primarily
intended to account for categorization performance in the presence of categorizers’ intuitive
theories. However, natural extensions to these models intended to account for the effects of
such theories have been proposed, and considerable theoretical parsimony would be achieved if
these extensions could account for categorization performance in light of those theories. Thus,
a second purpose of the current article is to consider whether such proposals are sufficient to
account for the categorization performance in light of causal knowledge that links features of
categories.
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2. Method

2.1. Materials

Six novel categories were constructed: two biological kinds (Kehoe Ants, Lake Victoria
Shrimp), two non-living natural kinds (Myastars, Meteoric Sodium Carbonate), and two arti-
facts (Romanian Rogos, Neptune Personal Computers). Each category had four binary features
which were described as distinctive relative to a superordinate category. Each feature was de-
scribed as probabilistic, that is, not all category members possessed it (e.g., “Some Lake
Victoria Shrimp have a high quantity of the ACh neurotransmitter whereas others have nor-
mal amounts.” “Some Lake Victoria Shrimp have a fast flight response whereas others have
a normal flight response,” etc.). Throughout this article the presence of a feature is denoted
with “1,” and its absence with “0.” Each causal relationship was described as one feature
causing another (e.g., “A high quantity of ACh neurotransmitter causes a long-lasting flight
response.”), accompanied with one or two sentences describing the causal mechanism (e.g.,
“The duration of the electrical signal to the muscles is longer because of the excess amount of
neurotransmitter.”). A complete description of the categories’ cover story, features, and causal
relationships is available athttp://cogsci.psy.utexas.edu/supplements/.

2.2. Procedure

Experimental sessions were conducted by computer. Participants first studied several screens
of information about their assigned category at their own pace. All participants were first
presented with the cover story and the category’s features and their base rates. Participants in
the common-cause condition were then instructed on the common-cause causal relationships
(F1 → F2, F1 → F3, and F1 → F4), participants in the common-effect condition were
instructed on the common-effect relationships (F1 → F4, F2 → F4, and F3 → F4), and control
participants were told of no causal links between features. Common-cause and common-effect
participants also observed a diagram like those inFig. 1 depicting the structure of the causal
links. When ready, all participants took a multiple-choice test that tested them on the knowledge
they had just studied. During the test participants could request help in which case the computer
re-presented the information about the category. However, participants were required to retake
the test until they committed 0 errors and made 0 requests for help. For common-cause and
common-effect participants the test consisted of 21 questions. For control participants the test
consisted of 7 questions.

All participants then performed three tasks counterbalanced for order: a classification task,
a property induction task, and a similarity rating task. The results from the property induction
and similarity task are unrelated to the theoretical issues raised in this report and are omitted.
During the classification task, participants rated the category membership of 48 exemplars,
consisting of all possible 16 objects that can be formed from four binary features and the
eight single-feature exemplars, each presented twice. For example, those participants assigned
to learn the Lake Victoria Shrimp category were asked to classify a shrimp that possessed
“High amounts of the ACh neurotransmitter,” “A normal flight response,” “An accelerated
sleep cycle,” and “Normal body weight.” The feature values of each to-be-rated exemplar

http://cogsci.psy.utexas.edu/supplements/
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were listed in order (F1 through F4) on the computer screen. The list of feature values for
single-feature exemplars contained “???” for the three unknown features. The order of the 48
exemplars was randomized for each participant.

Participants entered their rating with a response bar that appeared underneath the exemplar.
The left and right arrow keys were used to move a bar along a horizontal scale to a position
which reflected confidence in the exemplar’s category membership. The left end of the scale
was labeled “Definitely not an X” and the right end was labeled “Definitely an X,” where X
was the name of the category. The response bar could be set to 21 distinct positions. Responses
were scaled into the range 0–100. Experimental sessions lasted for approximately 45 minutes.

2.3. Participants

One hundred and eight University of Illinois undergraduates received course credit for
participating in this experiment. They were randomly assigned in equal numbers to the three
conditions, and to one of the six experimental categories.

3. Results

Category membership ratings for the 16 test exemplars averaged over participants in the
common-cause, common-effect, and control conditions are presented inTable 2, and inFig. 3
for selected exemplars. The presence of inter-feature causal relationships in the common-cause

Table 2
Observed categorization ratings, and the ratings predicted by causal-model theory in the common-cause and
common-effect conditions

Common cause Common effect Control

Exemplar Observed Predicted Observed Predicted Observed

0000 60.0 (5.3) 61.7 70.0 (4.8) 69.3 70.7 (3.3)
0001 44.9 (3.8) 45.7 26.3 (4.0) 27.8 67.0 (3.1)
0010 46.1 (3.9) 45.7 43.4 (3.8) 47.7 65.6 (3.5)
0100 42.8 (3.7) 45.7 47.3 (4.0) 47.7 66.0 (3.4)
1000 44.5 (5.1) 44.1 48.0 (3.7) 47.7 67.0 (3.6)
0011 41.0 (4.0) 40.1 56.3 (3.6) 56.5 67.1 (3.1)
0101 40.8 (4.0) 40.1 56.5 (3.8) 56.5 66.5 (3.5)
0110 42.7 (4.1) 40.1 38.3 (3.8) 39.2 65.6 (3.3)
1001 55.1 (4.1) 52.7 57.7 (3.4) 56.5 68.0 (2.9)
1010 52.6 (4.3) 52.7 43.0 (4.0) 39.2 67.6 (3.3)
1100 54.3 (3.7) 52.7 41.9 (3.6) 39.2 69.9 (2.8)
0111 39.4 (4.6) 38.1 71.0 (2.9) 74.4 67.6 (3.1)
1011 64.2 (3.8) 65.6 75.7 (2.1) 74.4 67.2 (2.9)
1101 65.3 (4.0) 65.6 74.7 (2.0) 74.4 70.2 (2.9)
1110 62.0 (4.1) 65.6 33.8 (5.7) 35.8 72.2 (2.7)
1111 90.8 (2.4) 89.6 91.0 (2.2) 90.0 75.6 (2.7)

Standard errors for observed ratings are shown in parentheses.
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Fig. 3. Categorization ratings for selected exemplars. (a) In the common-cause and control conditions. (b) In the
common-effect and control conditions. Ratings predicted by causal-model theory are shown in each panel.

and common-effect conditions had a large effect on the category membership ratings relative
to the control condition. For instance, exemplars 1000 and 0111 were given significantly lower
ratings in the common-cause condition (44.5 and 39.4, respectively) than in the control con-
dition (67.0 and 67.6). In addition, exemplars 0001 and 1110 were given significantly lower
ratings in the common-effect condition (26.3 and 33.8, respectively) than in the control condi-
tion (67.0 and 72.2). Presumably, these lower ratings in the common-cause and common-effect
conditions arose because those exemplars broke expected pairwise correlations between fea-
tures. For example, in the common-cause condition exemplar 1000 breaks all three expected
correlations because features F2, F3, and F4 are absent even though their cause F1 is present,
and exemplar 0111 breaks all three correlations because features F2, F3, and F4 are present
even though F1 is absent. Similarly, in the common-effect condition exemplar 1110 breaks
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expected correlations because features F1, F2, and F3 are present even though their effect F4

is absent, and exemplar 0001 breaks all three correlations because features F1, F2, and F3 are
absent even though F4 is present.

Fig. 3also indicates that exemplar 1111 received a significantly higher rating in the common-
cause (90.8) and common-effect (91.0) conditions as compared to the control condition (75.6).
The higher rating received by 1111 in the causal schema conditions obtained presumably
because in both conditions exemplar 1111 preserves all three expected pairwise correlations
(cause and effect features are both present for all three causal links). Overall, the pattern
of results shown inFig. 3 indicates the presence of interactions between features because
categorization ratings were a non-monotonic function of the number of features: test exemplars
with 0 and 4 features (i.e., 0000 and 1111) received higher ratings than exemplars with one
and three features (i.e., 1000 and 0111 in the common-cause condition, 0001 and 1110 in the
common-effect condition).

An effect of causal schema condition on category membership ratings was confirmed by sta-
tistical analysis. A two-way ANOVA with condition (3 levels: common-cause, common-effect,
control) and exemplar (16 levels) with repeated measures on the second factor was conducted.
In this analysis there was a significant interaction between experimental condition and exemplar
(F(28, 1470) = 12.77, MSE= 294.5,p < .0001) reflecting the fact that the pattern of ratings
given to exemplars differed in the three conditions. More specifically, the pattern of categoriza-
tion ratings differed between the common-cause and control conditions (significant interaction
between the common-cause/control contrast and the exemplar factor,F(14, 1470) = 8.16,
p < .0001), and between the common-effect and control conditions (interaction between the
common-effect/control contrast and exemplar,F(14, 1470) = 17.11,p < .0001).

It was suggested earlier that causal schemas might affect the importance of interactions
among features, especially those that preserve or break expected correlations among features.
To test these hypotheses directly, category membership ratings were analyzed by performing
a multiple regression for each participant. First, four predictor variables (f1, f2, f3, f4) were
coded as−1 if the feature was absent, and+1 if it was present. The regression weight asso-
ciated with eachfi represents the influence the feature had on category membership ratings.
Positive weights will result if the presence of a feature increases the categorization rating and
if the absence of the feature decreases it. Second, an additional six predictor variables were
constructed by computing the multiplicative interaction between each pair of features:f12, f13,
f14, f24, f34, andf23. The resulting interaction terms are coded as−1 if one of the features is
present and the other absent, and+1 if both are present or both absent. For those feature pairs
on which a causal relationship is defined, the two-way interaction terms represent whether an
expected pairwise correlation is preserved (+1, cause and effect both present or both absent) or
broken (−1, cause present and effect absent, or cause absent and effect present). The regression
weights associated with these two-way interactions index the influence that the preservation
or breaking of the correlation had on categorization ratings, with a positive weight indicat-
ing that confirmation leads to a higher categorization rating and violation to a lower one.
Finally, the four three-way interactions (f123, f124, f134, and f234) were also included as pre-
dictors in the per-participant regressions to test for the presence of higher-order interactions
among features. The regression weights averaged over participants in the common-cause,
common-effect, and control conditions are presented inFig. 4. I first discuss the impact of
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causal knowledge first on the weights of individual features and then on interactions between
features.

3.1. Feature weights

Fig. 4demonstrates that causal knowledge affected the weight given to individual features.
In the common-cause condition, the common-cause (f1) carried greater weight (8.2) than the
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three effects (1.8, 1.9, and 2.3 forf2, f3, and f4). And, in the common-effect condition the
common-effect (f4) had greater weight (9.0) than the three cause features (3.5, 2.1, and 1.9 for
f1, f2, andf3, respectively). These differences in feature weights were confirmed by statistical
analysis. A 3 (causal schema) by 4 (feature: 1, 2, 3 or 4) ANOVA on the regression weights was
carried out, with repeated measures on the last factor. The pattern of feature weights differed
as a function of causal schema (as indicated by a significant interaction between schema and
feature,F(6, 315) = 9.33, MSE= 26.3 p < .0001). More specifically, the pattern of weights
differed between the common-cause and control conditions (F(3, 315) = 4.83, p < .005),
and between the common-effect and control conditions (F(3, 315) = 8.35,p < .0001). The
greater importance of any feature that participates in many causal relationships such as common
causes and common effects replicates past research (Rehder & Hastie, 2001).

3.2. Feature interactions

Fig. 4 also demonstrates that causal knowledge affected the weight given to pairwise in-
teraction terms. In particular, the pairwise interaction terms corresponding to those feature
pairs assigned causal relationships had positive weights in both the common-cause condition
(5.1, 4.3, and 5.5 forf12, f13, andf14), and the common-effect condition (7.6, 7.5, and 8.0 for
f14, f24, andf34). That is, category membership ratings were higher when a cause and effect
feature and were either both present or both absent, and lower when one of those features was
absent and the other present. This result indicates that participants considered an exemplar a
better category member when it preserved the category’s expected correlations and a worse
member when it broke those correlations. As expected, in the control condition the six two-way
interaction terms were all approximately zero.

A 3 (causal schema) by 6 (two-way interaction term) ANOVA on the regression weights con-
firmed that the pattern of weights given to the two-way interaction terms depended on the causal
schema (significant interaction between causal schema and interaction term,F(10, 525) =
26.72, MSE= 10.3, p < .0001). The pattern of two-way interactions in the common-cause
and common-effect conditions each differed from the control condition (F(5, 525) = 4.95,
p < .0001;F(5, 525) = 34.59, p < .0001). The three two-way interaction weights corre-
sponding to the three causal relationships differed from the control condition (allp’s < .005),
in both the common-cause and common-effect conditions.

The results presented thus far are consistent with the hypothesis that the common-cause
and common-effect schemas have analogous effects on category membership ratings. First,
in both causal schemas the feature common to many causal relationships (i.e., the common
cause and common effect) became most heavily weighted in category membership decisions.
Second, in both schemas participants attended to whether cause and effect features were in
agreement with one another. However, earlier in this article I argued that causal-model theory
predicts an important disanalogy between these two causal schemas, a prediction that was
shown to follow from the asymmetry of causal relationships. In fact, the regression weights
shown inFig. 4confirms that each condition exhibited a unique pattern of feature interactions,
a pattern characteristic of the associated causal network. First, it was shown earlier (Fig. 2) that
the common-cause schema implies that the three effect features will be correlated, because of
their common-cause. Consistent with this prediction, in the common-cause condition the three
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two-way interaction terms between the effect features (f24, f34, f23) are significantly greater than
those interactions in the control condition (1.7, 2.0, and 2.0 vs. 0.4, 0.5, and 0.8,F(1, 70) =
4.08, MSE = 7.44, p < .05). In contrast, the common-effect schema does not imply that
the three cause features will be correlated, and in fact in the common effect condition the
interactions between the cause attributes (f12, f13, f23) did not differ from those in the control
condition (seeFig. 4).

Second, the common-effect schema produces a pattern of classification behavior that results
in not just interactions between pairs of features, but also higher-order feature interactions.
In that condition interaction termsf124, f134, f234, and f1234 were−1.6, −2.0, −2.0, and 2.2
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Fig. 5. The logarithm of observed categorization ratings: (a) in the common-cause condition when the common
cause is present as a function of the number of effect features; (b) in the common-effect condition when the common
effect is present as a function of the number of causes. Ratings predicted by causal-model theory are shown in each
panel.
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as compared to−0.1,−0.3, 0.1, and 0.5 in the control condition. A 3 (causal schema) by 5
(higher-order interaction term) ANOVA on the regression weights confirmed that the pattern
of weights given to the higher-order interaction terms depended on the causal schema (sig-
nificant interaction between causal schema and interaction term,F(8, 420) = 3.15, MSE=
8.1, p < .05). In particular, the pattern of higher-order interaction terms differed between
the common-effect and control conditions (F(4, 420) = 4.96, p < .005). In the common-
cause condition causal-model theory predicts no higher-order interactions, and, indeed, the
higher-order interactions terms in that condition did not differ from those in the control
condition (F < 1).

I argued earlier that higher-order interactions are expected from a common-effect schema
because it predicts a non-linear increase in category membership ratings as the number of cause
features present to “explain” the common effect feature increases—in particular, categoriza-
tion ratings are expected to experience a greater increase when the number of cause features
increases from zero to one as compared to when additional cause features are introduced.
Fig. 5b presents the logarithm of categorization ratings in the common-effect condition for
those exemplars in which the common effect is present as a function of the number of cause
features. As predicted, categorization ratings increase more with the introduction of the first
cause feature as compared to subsequent cause features. (The reason for log coordinates in
Fig. 5 is explained below.) Apparently, participants considered the presence of at least one
cause explaining the presence the common-effect to be sufficient grounds to grant an exemplar
a relatively high degree of category membership in a common-effect category.

In contrast,Fig. 5ashows a linear increase in (the logarithm of) category membership ratings
for those exemplars in which the common cause is present as a function of the number of effect
features. That is, in the presence of the common cause, each additional effect produced a
constant increment in the goodness of category membership.

4. Discussion

According to causal-model theory, judgments of category membership are based on how
likely an object was to have been generated by a category’s causal laws. One sign of the oper-
ation of a causal law between two features is the presence of a pairwise correlation between
those features. As predicted, the introduction of causal relationships in both a common-cause
pattern and a common-effect pattern resulted in participants increasing their category mem-
bership ratings when an object’s features preserved those expected pairwise correlations, and
decreasing their ratings when the features broke them.

It was also argued earlier that the asymmetrical nature of causal relations is such that
they can be expected to produce additional structure in category members. As predicted,
common-cause but not common-effect participants were sensitive to pairwise correlations
between effect features in the common-cause condition. In addition, common-effect but not
common-cause participants were sensitive to higher-order correlations between features that
were consistent with a strategy that required a common-effect to have one cause to explain
its presence. Taken together, the pattern of feature interactions found in this experiment re-
flects the application of qualitatively different classification strategies in the common-cause
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and common-effect conditions. These results demonstrate that undergraduates are able to
perceive causal links as more than simple associations, and take into account the asym-
metries inherent in causal relationships (Waldmann & Holyoak, 1992; Waldmann et al.,
1995).

The current experiment also assessed the importance of features considered individually.
As discussed earlier, Ahn and her colleagues (Ahn, 1998; Ahn et al., 2000; Ahn & Lassaline,
1995; Sloman et al., 1998) have advanced specific proposals regarding the effects of causal
knowledge on feature weights, namely that features are more important to categorization to
the extent that they are “more causal,” that is, more deeply embedded in a causal network. In
contrast to these proposals, the common-effect results indicate that an effect feature that has
many potential causes becomes heavily weighted. This finding replicates previous research
with common-effect networks (Rehder & Hastie, 2001).

In the section that follows, I present a formal definition of causal-model theory, and then fit
the theory to the present categorization data. As will be shown, causal-model theory not only
provides a qualitative account of the current results, but also an excellent quantitative account.

5. Causal-model theory

The central claim of causal-model theory is that people’s knowledge of categories includes
not just features but also a representation of the causal mechanisms that link those features.
Fig. 6 demonstrates a simple causal model in which one feature, C, is depicted as the cause
of a second feature, E. Causal models such as those presented inFigs. 1 and 6are specialized
instances of Bayesian networks (Glymour, 1998; Jordan, 1999; Pearl, 1988). In this article the
variables are binary category features whose values represent whether the feature is present or
absent (values also denoted by “1” and “0,” respectively).

A Bayesian network represents the fact that an effect variable is causally influenced by
its immediate parents (technically, that the effect variable’s probability distribution is condi-
tionally independent of any non-descendent variable when the state of its parent variables are
known). However, by itself the network conveys no information regarding the details of the
causal relationships that link variables in a network. In contrast, causal-model theory makes
specific assumptions regarding the functional form of the causal relationships between binary
variables, namely, it assumes that people view features as being linked by probabilistic causal
mechanisms. It is assumed that when a cause feature is present (e.g., C inFig. 6) it enables the
operation of a causal mechanism that will, with some probability, bring about the presence of
the effect feature (e.g., E inFig. 6). When the cause feature C is absent it is assumed that it has
no causal influence on the effect E.

C E

c                   b
m

Fig. 6. A simple causal model with two binary features and one causal relationship.
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The probabilistic nature of the causal mechanism linking C and E is represented by parameter
m. Parameterm is the probability that the probabilistic mechanism that links C and E will
successfully operate (i.e., will bring about the presence of E) when C is present. Parameterm
corresponds to a probabilistic version of the familiar notion of thesufficiencyof causal relations.
Causal sufficiency obtains whenever a cause is always accompanied by its effect, and can be
represented by settingm equal to 1. Causal models also allow for the possibility that there
might be other unspecified causes of effects. Parameterb represents the probability that E will
be present even when it is not brought about by C. Parameterb corresponds to a probabilistic
version of the familiar notion of thenecessityof causal relations. Causal necessity obtains
whenever an effect is always accompanied by its cause, and can be represented by setting
the effect’sb parameter equal to 0. Parameterb can be interpreted as the probability that E
is brought about by some unspecified background cause other than C. Finally, parameterc
represents the probability that feature C will be present.

An important characteristic of this formalization of causal knowledge is that it reflects our
intuitive understanding of the asymmetry of causal relationships. First, it is assumed that when
the causal mechanism presumed to link C and E operates (with probabilitym) it generates
E but not C. Second, it is assumed that the mechanism potentially operates only when C is
present but never when C is absent. As a result, causal-model theory is sensitive to which
values of the binary variables C and E inFig. 1 are called “present” and which are called
“absent,” and also which variable is called the “cause” and which the “effect.” In contrast, a
symmetrical relation like correlation is insensitive to which value of a binary variable is labeled
present and which is labeled absent and also to whether the variable plays the role of cause or
effect.

The second major claim of causal-model theory is that categorizers make classification
decisions by estimating how likely an exemplar is to have been generated by a category’s
causal model. The likelihood that the model will generate any combination of the features
can be expressed as a function of the model’s parameters. For example,Table 3presents the
likelihoods that the causal model ofFig. 6 will generate the four possible combinations of
C and E in terms of the parametersc, m, andb. The probability that C and E will both be
absent (i.e.,P(∼C∼E), also referred to asP(00)), is the probability that C is absent (1− c)
times the probability that E is not brought about by any background causes (1− b). Note that
parameterm is not involved in this likelihood because it is assumed that the causal mechanism
relating C and E only potentially operates when C is present. The probability that C is absent
but E is present (i.e.,P(∼CE) orP(01)) is (1− c) times the probability that E is brought about
by any background cause,b. The probability that C is present but E absent (i.e.,P(C∼E) or

Table 3
Likelihood equations for the causal model ofFig. 2

Exemplar (E) L(E; c, m, b)

00 [1− c][1 − b]
01 [1− c][b]
10 [c][(1 − m)(1 − b)]
11 [c][m + b − mb]
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P(10)) is c times the probability that E is not brought about the causal mechanismand not
brought about by the background cause (1− m)(1 − b). Finally, the probability that C and E
are both present (i.e.,P(CE) orP(11)) isc times the probability that E is brought about by the
causal mechanismor brought about by the background cause (m + b − mb), or equivalently
[1 − (1 − m)(1 − b)]. Note thatTable 2represents a proper probability function because
P(00) + P(01) + P(10) + P(11) = 1 for any values ofc, m, andb in the range 0–1.

In this article I will assume that the causal links of the common-cause and common-effect
schemas shown inFig. 1are each assumed to be constituted by a probabilistic causal mechanism
like that assumed for the simple model ofFig. 6. Specifically, in the common-cause model it
is assumed that three probabilistic causal mechanisms link F1 with F2, F3, and F4. These
three causal mechanisms are assumed to operate independently and each with probabilitym.
Likewise, in the common-effect model it is assumed that three probabilistic causal mechanisms
that operate independently each with probabilitym link F1, F2, F3 with F4. In each model it is
also assumed that each effect feature has potential background causes (b for F2, F3, and F4 in the
common-cause model, andb for F4 in the common-effect model) that operate independently.
Finally, each cause feature has a parameter representing the probability that it will be present
(c for F1 in the common-cause model, andc for F1, F2, and F3 in the common-effect model).1

Likelihood equations for the common-cause and common-effect models can be derived
by applying the same Boolean algebra operations that were applied to the simple model of
Fig. 6. For example, the probability of exemplar 1101 (i.e., F1, F2 and F4 present, F3 absent)
being generated by a common-cause model is the probability that F1 is present [c], times the
probability that F2 was brought about by F1 or its background cause [m + b − mb], times the
probability that F3 was brought about by neither F1 nor its background cause [(1−m)(1− b)],
times the probability that F4 was brought about by F1 or its background cause [m + b − mb].
Likewise, the probability of exemplar 1011 being generated by a common-effect model is the
probability that F1 is present [c], times the probability that F2 is absent [1− c], times the
probability that F3 is present [c] times the probability that F4 was brought about by F1, F3, or
its background cause [1− (1− m)(1− m)(1− b)]. The 16 possible combination of values for
F1, F2, F3, and F4 for the common-cause and common-effect models are presented inTable 4
as a function of the parametersc, m, andb.

As described earlier, a fundamental claim of causal-model theory is that although causal
mechanisms are reflected in feature correlations, they are not equivalent to those correlations.
In particular, the common-cause and common-effect causal schemas were selected for test-
ing in this research in order to demonstrate that causal relationships exhibit an asymmetry
that is not characteristic of the symmetric relation of correlation. This lack of equivalency
between pairwise causal mechanisms and pairwise feature correlations can be illustrated by
examining the likelihoods of exemplars expected to be generated by the common-cause and
common-effect models each instantiated with parameter valuesc = 0.6,m = 0.5, andb = 0.3.
(The qualitative predictions about to be described do not depend on these specific values, but
rather hold for all values of these parameters >0 and<1.) The resulting exemplar likelihoods
are presented inTable 4. From these likelihoods the correlations between features that would
obtain in populations of category exemplars that perfectly instantiated those distributions were
calculated. As expected, pairs of features linked by causal relationships are correlated with
one another: For the common-cause schema there are correlations between the common-cause
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Table 4
Likelihood equations for the common-cause (CC) and common-effect (CE) models

Exemplar (E) LCC(E; c, m, b) LCC(E; 0.6, 0.5, 0.3) LCE(E; c, m, b) LCE(E; 0.6, 0.5, 0.3)

0000 [1− c][1 − b][1 − b][1 − b] 0.137 [1− c][1 − c][1 − c][1 − b] 0.045
0001 [1− c][1 − b][1 − b][b] 0.059 [1− c][1 − c][1 − c][b] 0.019
0010 [1− c][1 − b][b][1 − b] 0.059 [1− c][1 − c][c][(1 − m)(1 − b)] 0.034
0100 [1− c][b][1 − b][1 − b] 0.059 [1− c][c][1 − c][(1 − m)(1 − b)] 0.034
1000 [c][(1 − m)(1 − b)][(1 − m)(1 − b)][(1 − m)(1 − b)] 0.026 [c][1 − c][1 − c][(1 − m)(1 − b)] 0.034
0011 [1− c][1 − b][b][b] 0.025 [1− c][1 − c][c][1 − (1 − m)(1 − b)] 0.062
0101 [1− c][b][1 − b][b] 0.025 [1− c][c][1 − c][1 − (1 − m)(1 − b)] 0.062
0110 [1− c][b][b][1 − b] 0.025 [1− c][c][c][(1 − m)(1 − m)(1 − b)] 0.025
1001 [c][(1 − m)(1 − b)][(1 − m)(1 − b)][m + b − mb] 0.048 [c][1 − c][1 − c][1 − (1 − m)(1 − b)] 0.062
1010 [c][(1 − m)(1 − b)][m + b − mb][(1 − m)(1 − b)] 0.048 [c][1 − c][c][(1 − m)(1 − m)(1 − b)] 0.025
1100 [c][m + b − mb][(1 − m)(1 − b)][(1 − m)(1 − b)] 0.048 [c][c][1 − c][(1 − m)(1 − m)(1 − b)] 0.025
0111 [1− c][b][b][b] 0.011 [1− c][c][c][1 − (1 − m)(1 − m)(1 − b)] 0.119
1011 [c][(1 − m)(1 − b)][m + b − mb][m + b − mb] 0.089 [c][1 − c][c][1 − (1 − m)(1 − m)(1 − b)] 0.119
1101 [c][m + b − mb][(1 − m)(1 − b)][m + b − mb] 0.089 [c][c][1 − c][(1 − (1 − m)(1 − m)(1 − b))] 0.119
1110 [c][m + b − mb][m + b − mb][(1 − m)(1 − b)] 0.089 [c][c][c][(1 − m)(1 − m)(1 − m)(1 − b)] 0.019
1111 [c][m + b − mb][m + b − mb][m + b − mb] 0.165 [c][c][c][1 − (1 − m)(1 − m)(1 − m)(1 − b)] 0.197
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attribute and its effects (r = .343), and for the common-effect schema there are correlations
between the common effect and its causes (r = .197). However, although the common-cause
schema produces correlations between the three effects (r = .118), the common-effect schema
does not produces correlations between the three causes (r = 0). These correlations conform
to the pattern of pairwise feature correlations presented earlier inFig. 2.

Additional analysis of this example reveals that there is also higher-order structure among
features in the common-effect case. Earlier I argued on intuitive grounds that a common-effect
schema predicts that category membership ratings should experience a greater increase when
the number of cause features increases from zero to one as compared to when additional cause
features are introduced, but that no such effect should obtain for the common-cause network.
In the common-cause case, the likelihood of an exemplar that has the common cause feature
as a function of the number of effect features also present is 0.026, 0.048, 0.089 and 0.165 for
0, 1, 2, and 3 effect features, respectively. In the common-effect example, the likelihood of an
exemplar that has the common effect feature as a function of the number of cause features also
present is 0.019, 0.062, 0.119, and 0.197 for 0, 1, 2, and 3 cause features, respectively. Note that
the common-effect likelihoods experience a greater increase as the number of cause features
increases from zero to one (from 0.019 to 0.062) than do the common-cause likelihoods as the
number of effect features increases from zero to one (from 0.026 to 0.048). Moreover, it can
be shown that when logarithms of the likelihoods are taken, the common-cause log likelihoods
experience a constant increase (of 0.269) as the number of effect features increases. In contrast,
the common-effect log likelihoods experience a large increase (of 0.519) when the first cause
feature is added to explain the presence of the common-effect, but that this increase decreases
as additional cause features are added (0.280 for the second cause, 0.220 for the third). That
is, adiscounting effectis predicted in which there are diminishing marginal returns expected
for explaining an effect that is already adequately explained.

The discounting effect distinguishes the current development of causal-model theory from
that presented byWaldmann et al. (1995). Waldmann et al. derive their predictions regarding the
statistical structure of category members assuming continuous variables and applying structural
equation modeling. For example, the relationship between a continuous common effect and
three continuous causes is defined to be,

E = w1C1 + w2C2 + w3C3 + U

wherewi is the weight representing the strength of causeCi, andU represents a random error
component. However, this formalization of causal relations does not predict a discounting
effect. Thus, the discounting effect represents a novel prediction of the current formalization
of causal relations based on binary variables.

5.1. Theoretical modeling of empirical results

To assess whether the common-cause and common-effect causal models provide a quanti-
tative in addition to a qualitative account of the patterns of classification found in the current
experiment, those models were fitted to the category membership ratings of each participant
in the common-cause and common-effect conditions. Note that when there are two candidate
categories to which an object might belong, the likelihoods from each category’s causal model
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may be combined according to Luce’s choice axiom to predict choice probabilities. For ex-
ample, the probability that an exemplar E will be classified into category A versus B would be
given by

P(A|E) = LA(E)

[LA(E) + LB(E)]

whereLA and LB are the likelihoods that E was generated by A and B’s causal models,
respectively (seeRehder, 1999for an application). However, in this study undergraduates
were first taught a single novel category and then were asked to rate the category membership
of a number of exemplars. Hence, each participant’s ratings were predicted from the equation,

Rating(E) = KL(E; c, m, b)

whereL(E; c, m, b) is the likelihood of exemplar E as a function ofc, m, andb. The likelihood
equations for the common-cause and common-effect models shown inTable 4were used for
common-cause and common-effect participants, respectively.K is a scaling constant that brings
the likelihoods into the range 0–100. For each of the 36 participants in the common-cause
condition, the set of common-cause model parametersK, c, m, and b that minimized the
squared deviation between predictions and observations was computed. Likewise, the set of
common-effect model parametersK, c, m, andb that minimized the squared deviation between
predicted and observed ratings was computed for each of the 36 common-effect participants.
The best fitting values for parametersK, c, m, andb averaged over participants are presented
in Table 5for the two conditions.

The significantly positive estimate form in both conditions indicates how causal-model
theory accounts for participants’ sensitivity to correlations among features by assuming the
presence of probabilistic causal laws. For example, earlier it was shown how common-cause
participants gave lower category membership ratings to exemplars 1000 and 0111, and a higher
rating to exemplar 1111.Fig. 3apresents the fit of the common-cause model to these exem-
plars, and indicates that it provides an excellent fit to each. According to causal-model theory,
exemplars 1000 and 0111 are poor category members because they are unlikely to be generated
by common-cause causal laws (because they break many expected correlations), and 1111 is a
good category member because it is likely to be generated by those laws (because it preserves
many expected correlations). Likewise,Fig. 3bindicates how the common-effect model pro-
vides an excellent fit in the common-effect condition to the low ratings assigned to exemplars
that broke many expected correlations (0001 and 1110) and to the high rating assigned to the
exemplar that preserved many correlations (1111).

To understand the predictions of causal-model theory in terms of feature weights and interac-
tions between features, each participant’s predicted ratings were subjected to the same multiple
regression that was performed on the observed ratings. The resulting regression weights aver-
aged over participants are presented inFig. 4superimposed on the weights from the observed
data.Fig. 4confirms that causal-model theory reproduces participants’ sensitivity to agreement
between pairs of features directly connected by causal relationships in both the common-cause
condition (f12, f13, and f14) and the common-effect condition (f14, f24, and f34). Moreover,
Fig. 4 indicates that causal-model theory is also able to account for those interaction terms
distinctive to each causal model. That is, it accounts for the interactions between the effect
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Table 5
Model fitting results

Parameters Common-cause condition Common-effect condition

Causal-model theory
c 0.578 (0.020) 0.522 (0.005)
m 0.214 (0.042) 0.325 (0.042)
b 0.437 (0.019) 0.280 (0.033)
K 846 (42.9) 876 (30.2)

Avg. RMSD 8.7 12.1

Configural-Features Prototype Model
sc 0.779 (0.043) 0.935 (0.016)
se 0.946 (0.012) 0.749 (0.038)
sv 0.792 (0.042) 0.782 (0.026)
K 90.6 (2.5) 99.9 (2.4)

Avg. RMSD 8.8 14.8

Exemplar-Fragments Model
sc 0.389 (0.063) 0.456 (0.047)
se 0.499 (0.066) 0.258 (0.058)
g 0.334 (0.056) 0.357 (0.051)
K 61.1 (4.3) 63.9 (4.3)

Avg. RMSD 10.1 15.7

Standard errors for parameter estimates are shown in parentheses. RMSD= root mean square error.

features in the common-cause condition (f23, f24, andf34). It also accounts for the higher-order
feature interactions in the common-effect condition (f124, f134, f234, andf1234). The presence
of these distinctive patterns of feature interactions in the two causal schemas indicates that
causal-model theory, like the undergraduate participants, is sensitive to the asymmetry inher-
ent in causal relationships.Fig. 5 presents the predicted category membership ratings in the
presence of the common cause (Fig. 5a) and the common effect (Fig. 5b) as a function of
the number of effect and cause features, respectively. As the figure indicates, causal-model
theory reproduces the observed linear increase in ratings (in log coordinates) as one adds ef-
fect features to a common cause, and the observed non-linear increase in ratings as one adds
cause features to a common effect (i.e., the discounting effect). Finally,Fig. 4 indicates that
causal-model theory is able to account for the increased weight associated with the common
cause in the common-cause condition, and with the common-effect in the common-effect
condition.

6. Similarity-based accounts of correlated features

The previous section demonstrate that causal-model theory predicts and experimental par-
ticipants exhibit a sensitivity to correlated features in classification judgments as a result of the
presence of causal knowledge about a category. Nevertheless, it is important to also consider
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whether such sensitivity can be accounted for by extensions to more traditional categorization
models such as similarity-based prototype and exemplar models. As argued earlier, consider-
able theoretical parsimony would be achieved if these extensions could account for classifica-
tion performance in light of causal knowledge. In this section the fits of causal-model theory
to the classification data will be compared to fits achieved by extensions of similarity-based
prototype and exemplar models that have been proposed to account for the effects of prior
knowledge on categorization.

6.1. Prior knowledge and prototype models

As discussed earlier, some researchers have proposed that the effects of prior knowledge
on categorization can be characterized in terms of changes to subjective feature weights (Ahn,
1998; Ahn et al., 2000; Keil, 1989; Medin & Shoben, 1988). However, because a well-known
property of prototype models is that categorization is not influenced by combinations of features
above and beyond the features individually (Kemler Nelson, 1984; Medin, Altom, Edelson,
& Freko, 1982; Medin & Schwanenflugel, 1981), a prototype model is in principle unable to
account for the sensitivity to feature interactions reported in the present experiment. Neverthe-
less, there remains the possibility that a form of prototype model might be able to account for
the results by noting that prototype models leave open the question of what counts as a feature.
For example, one might postulate the existence of second-order features (Gluck & Bower,
1988; Hayes-Roth & Hayes-Roth, 1977; Minsky & Papert, 1988; Murphy, 1993; Neumann,
1974; Reitman & Bower, 1973; Rumelhart, Hinton, & Williams, 1986; Wattenmaker, Dewey,
Murphy, & Medin, 1986) that encode whether expected correlations are preserved or broken,
and that participate in similarity computations alongside primitive features. To illustrate, in the
common-cause condition exemplar 1110 might include three second-order properties which
indicate that the first and second correlations are preserved (F1 and F2 and F3 all present) but that
the third relationship is broken (F1 present but F4 absent). A category membership judgment
would then be made on the basis of the number of matching features between this 7-feature
exemplar (1110110, with the second-order features 110 coded on the fifth, sixth, and seventh
dimensions) and a 7-feature category prototype 1111111 that represents that the prototypical
category member has all four features present and preserves all three expected correlations.
The result of this comparison would be a match on three of the first four dimensions and two of
the last three. In contrast, the exemplar 0111 would be encoded as 0111000 because it breaks all
three expected correlations, and although it matches the category prototype 1111111 on three
of the first four dimensions, it mismatches on the last three. Thus, even though both exemplars
possess the same number of primitive features (three), 0111 would receive a lower category
membership rating than 1110 because of its greater number of missing second-order features
(i.e., broken correlations).

This proposal, which I shall refer to as theConfigural-Features Prototype Model, is for-
malized inAppendix A. The Configural-Features Prototype Model was fit to the category
membership ratings of each of the participants in the common-cause and common-effect con-
ditions. These fits involved estimating four parameterssc, se, sv, andK for each participant,
wheresc is the weight associated with a cause feature (F1 in the common-cause condition, F1,
F2, and F3 in the common-effect condition),se is the weight associated with an effect feature
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(F4 in the common-effect condition, F2, F3, and F4 in the common-cause condition),sv is the
weight associated with a broken correlation, andK is a scaling constant. The best fitting val-
ues for these parameters averaged over participants in the common-cause and common-effect
conditions are presented inTable 5. Note that lower estimates for a weight parameter means
that the feature is more influential; an estimate of 1 means that the presence or absence of the
feature has no influence on categorization decision.

As Table 5indicates, in both common-cause and common-effect conditions parametersv

differed significantly from 1, reflecting the sensitivity to pairwise correlations between features
directly connected by causal relationships. For example, in the common-cause condition the
fits to exemplars 0000, 1000, 0111, and 1111 were 60.6, 43.6, 38.5, and 90.6, respectively.
The sensitivity to correlated features is reflected in the lower estimates for exemplars with
many broken correlations (1000 and 0111) as compared to higher estimates for exemplars with
many preserved correlations (0000 and 1111). Likewise, in the common-effect condition the
fits to exemplars 0000, 0001, 1110, and 1111 were 61.3, 39.5, 38.3, and 99.9, respectively,
and sensitivity to correlated features is indicated by the lower estimates for those exemplars
with broken correlations (0001 and 1110) versus the higher estimates for those exemplars with
preserved correlations (0000 and 1111).

Table 5also indicates an effect of causal schemas on the weight of individual features. In the
common-cause condition, the common cause feature F1 was more influential (sc = 0.779) than
the corresponding effect features (se = 0.946). Similarly, in the common-effect condition, the
common effect feature F4 was more influential (se = 0.749) than the corresponding cause fea-
tures (sc = 0.935). These differences in model weights mirror the pattern of regression-based
feature weights presented earlier (Fig. 4).

These results indicate that the Configural-Features Prototype Model is able to account for the
effects of causal knowledge on the importance of individual features and of pairwise correla-
tions between features directly connected by causal relationships. However, as I have stressed
repeatedly, because causality is an asymmetric relationship it produces statistical structure
among category features in addition to pairwise feature correlations, such as higher-order in-
teractions involving the common-effect and its causes in a common-effect network.Fig. 7a
and bpresent the fits of the Configural-Features Prototype Model to the data presented earlier
in Fig. 5. Fig. 7bindicates that the Configural-Features Prototype Model is unable to account
for the discounting effect. That is, because the Configural-Features Prototype Model limits its
account of causal knowledge to an effect of whether expected pairwise correlations are con-
firmed or violated, it is unable to capture higher-order interactions among features predicted
by a common-effect network.

This failure of the Configural-Features Prototype Model is reflected in measures of the
degree of fit of the model to the data relative to causal-model theory. The root mean square
deviation (RMSD) associated with each models’ fits was computed for each common effect
participant.2 Causal-model theory yielded a better average RMSD than the Configural-Features
Prototype Model (12.1 vs. 15.7), and a better fit (according to RMSD) for 25 of 36 participants.

Fig. 7aindicates that, in contrast to the common-effect condition, the Configural-Features
Prototype Model does a good job of accounting for the common-cause ratings for those ex-
emplars in which the common cause is present as a function of the number of effect features.
One reason for this result was that the higher-order features defined by the Configural-Features
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Fig. 7. Model fits for the Configural-Features Prototype and Exemplar-Fragment Models.

Prototype Model accounts for correlations between features directly connected by causal re-
lationships. Another is that the Configural-Features Prototype Model assumes a multiplicative
similarity rule, such that predicted ratings are a non-linear function of the features (both basic
and higher-order) that an object displays. The result of this non-linear function is that the model
also exhibits a sensitivity to correlations between effect features. For example, regression anal-
yses run on the predictions of the Extended-Features Prototype Model in the common-cause
condition yielded an average weight on the two-way interactions between effect features (f23,
f24, and f34) of 1.8, which is in good agreement with the empirical weights on these terms
of 1.9 (seeFig. 4a). However, because the Extended-Features Prototype Model attributes this
sensitivity to correlations among effect features in the common-cause condition merely to
participant’s logarithmic use of the response scale, it also predicts a sensitivity to pairwise
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correlations between cause features in the common-effect condition. Indeed, regression anal-
yses run on the predictions of the Extended-Features Prototype Model in the common-effect
condition yielded an average weight on the two-way interactions between cause features (f12,
f13, andf23) of 1.6. However, no such sensitivity is found in that condition’s empirical results
(average weights on those terms of 0.2, seeFig. 4b). Thus, the pattern of two-way interactions
in the common-cause condition cannot be attributed merely to participant’s use of a logarithmic
response scale.

6.2. Prior knowledge and exemplar models

Another way to try to account for the categorization results in terms of a similarity-based
model is to extend an exemplar model such as the context model (Medin & Schaffer, 1978;
Nosofsky, 1986). The context model predicts sensitivity to correlated features, although ordi-
narily this sensitivity emerges as a by-product of classifying by similarity to previously-observed
category exemplars stored in memory. However, in this study participants observed no exem-
plars of the category, and as a result any sensitivity to correlated features must be attributed
directly to the causal knowledge that participants learn rather than stored exemplars. Neverthe-
less,Heit (1994, 1998)has proposed that exemplar models can be extended to accommodate the
effects of prior knowledge by assuming that such knowledge takes the form “prior exemplars”
stored in memory. On this account, categorization involves computing the similarity between
a to-be-classified exemplar and stored category exemplars, including those exemplars that
represent prior knowledge.

To account for the effects of causal knowledge on categorization in this section I consider
a prototype model elaborated with a number of partial exemplars representing causal knowl-
edge stored in memory. The partial exemplars encode the inter-feature correlations expected
from causal relations. For example, in the common-cause condition I will assume that partici-
pants encode the common-cause causal relationships as three pairs of partial exemplars: 11xx
and 00xx (“x” representing an unknown value) representing the F1 → F2 causal link, 1x1x
and 0x0x representing the F1 → F3 link, and 1xx1 and 0xx0 representing the F1 → F4 link.
Likewise, in the common-effect condition I assume that the common-effect causal links are
encoded as 1xx1 and 0xx0 (for link F1 → F4), x1x1 andx0x0 (for link F2 → F4), andxx11
andxx00 (for link F3 → F4). These partial exemplars enable an exemplar model to exhibit
sensitivity to pairwise feature correlations, because an exemplar that breaks many correlations
will be dissimilar to those stored exemplars. For example, in the common-cause condition
although exemplar 0111 matches three of the four features of the category prototype 1111, it
perfectly matches the features of none of six partial exemplars 11xx, 00xx, 1x1x, 0x0x, 1xx1,
and 0xx0. In contrast, exemplar 1110 matches not only three of the four features of the cate-
gory prototype, but it also perfectly matches the features of two of the partial exemplars (11xx
and 1x1x). Thus, all else begin equal, 1110 will receive a higher category membership rating
than 0111.

This proposal, which I shall refer to as theExemplar-Fragments Model, is formalized in
Appendix B. The Exemplar-Fragments Model was fit to the category membership ratings
of each of the participants in the common-cause and common-effect conditions. These fits in-
volved estimating four parameterssc, se, g, andK for each participant, wheresc andse represent
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the weight associated with cause and effect features, respectively (as in the Configural-Features
Prototype Model),K is a scaling constant, andg represents the relative weight given to the
similarity of a new to-be-classified exemplar to the exemplar fragments versus the prototype.

The best fitting values for parametersc, se, g, and K averaged over participants in the
common-cause and common-effect conditions are presented inTable 5. Consistent with the
regression-based feature weights presented earlier (Fig. 4) and the fits of causal-model theory
and the Configural-Features Prototype Model, the fits of the Exemplar-Fragments Model reveal
an effect of causal schemas on the weight of individual features. In the common-cause con-
dition, the common cause feature F1 had more influence (sc = 0.389) than the corresponding
effect features (se = 0.499), and in the common-effect condition, the common effect feature
F4 had more influence (se = 0.258) than the corresponding cause features (sc = 0.456).
In addition, in both common-cause and common-effect conditions parameterg differed sig-
nificantly from 0, reflecting the sensitivity to pairwise correlations between features directly
connected by causal relationships. This sensitivity is demonstrated by the fits to exemplars
that either preserve or break many correlations: In the common-cause condition the fits to
exemplars that broke many expected correlations (42.4 for 1000 and 39.1 for 0111) were
lower than the fits to exemplars that preserved many correlations (52.5 for 0000 and 91.5
for 1111). Similarly, in common-effect condition the fits to exemplars that broke many ex-
pected correlations (38.3 for 0001 and 36.6 for 1110) were lower than the fits to exemplars
that preserved many correlations (55.5 for 0000 and 98.2 for 1111). These fits capture at a
qualitative level the effects of preserved and broken correlations seen in the original empirical
data (Fig. 3).

However, like the Configural-Features Prototype Model, the Exemplar-Fragments Model
represents causal knowledge as a symmetric relation.Fig. 7c and dpresents the fits of the
Configural-Features Prototype Model to the data presented earlier inFig. 5. As Fig. 7dindi-
cates, the Exemplar-Fragments Model is unable to account for the common-effect categoriza-
tion ratings for those exemplars in which the common effect is present as a function of the
number of cause features. Like the Configural-Features Prototype Model, it is unable to account
for discounting effect. This failure of the Exemplar-Fragments Model in the common-effect
condition is reflected in a measure of the degree of fit of the model (Avg. RMSD= 15.7)
relative to causal-model theory (Avg. RMSD= 12.1), and the fact that is produced a worse fit
than causal-model theory for 24 of the 36 common effect participants.

7. General discussion

The current results support the claim that people have a representation of the causal mech-
anisms that link category features, and that they categorize by evaluating whether an object’s
features were likely to have been generated by those mechanisms. That is, people have models
of the world that lead them to expect a certain distribution of features in category members,
and consider exemplars good category members to the extent they manifest those expectations.

A key assumption of causal-model theory is that the presence of causal knowledge changes
one’s expectations regarding not only individual features, but also the entire combination of
features that a category member is likely to display. This result was predicted on the grounds
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that a primary role of theoretical knowledge is to determine how well the features of an object
relate to, or cohere with, one another. As predicted, participants considered good category
members those exemplars whose combination of features were likely to be generated by the
category’s causal laws, such as those which preserved correlations between features directly
connected by causal relationships. In addition, participants were also sensitive to correlations
between effect features in a common-cause schema, and to higher-order interactions among
causes and their common effect in a common-effect schema. These additional results indi-
cate that participants were sensitive to even quite subtle aspects of the statistical structure of
exemplars that are generated by a category’s causal model. In the following section I discuss
implications of causal-model theory’s generative approach to computing evidence for category
membership, and the asymmetrical and probabilistic representation of causality on which it
is based.

The model fitting results revealed that not only did causal-model theory provide a good
qualitative account of these findings, it provided a good quantiative account as well. These
quantitative fits also enabled comparison with similarity-based prototype and exemplar models
augmented with extensions to represent the causal knowledge that was presented to participants.
The result was that causal-model theory achieved better fits to the categorization ratings, and
that both similarity-based models were unable to account for important qualitative trends in
the data. In the section following the next I discuss the apparent difficulties associated with
accounting for categorization decisions on the basis of overlapping features when theoretical
knowledge is present.

Finally, it also important to note that although this article emphasizes the influence that causal
knowledge has on determining the importance of combinations of features, causal knowledge
also influenced the importance of features individually. In the final section, I discuss the finding
that causal knowledge increases the importance of common-cause and common-effect features
relative to other features.

7.1. Asymmetric and probabilistic causal mechanisms

Since Hume the traditional analysis of causal relations has been that they are indistinguish-
able from the symmetric relation of correlation. This tradition has largely continued in modern
cognitive psychology. For example, the study of causal reasoning and attribution has often
assumed that the perception of causality is no more than the perception of correlation un-
der special conditions, namely, temporal precedence (causes must not follow their effects in
time), spatial contiguity, and certain assumptions regarding the default background conditions
against which causal induction takes place (Cheng & Novick, 1990, 1991, 1992; Kelly, 1973;
Schustack & Sternberg, 1981).

However, more recent research supports the view that people’s knowledge of causal re-
lationships differs in important ways from the knowledge of the corresponding correlations.
For example,Waldmann and Holyoak (1992)found that learners exhibited cue competition
effects when predicting the presence of an effect from multiple possible causes but not when
predicting a cause from multiple possible effects (also seeWaldmann, 2000; Waldmann et al.,
1995). Ahn, Kalish, Medin, and Gelman (1995, Experiment 4)found that a statement of causal
mechanism between two types of events had greater influence on subsequent attributions than
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did a statement of covariation between those events, even though the expressed magnitude of
covariation was derived from the causal mechanism itself.Cheng’s (1997)power PC theory
of causal induction rests on the assumption that although people generally induce the strength
of a causal relationship from the observed co-occurrences between causes and effects, disso-
ciations between judgments of causal strength and correlations arise under certain boundary
conditions. Finally, theorists have noted that causal versus correlational knowledge is critical
for successfully intervening in the world (manipulating causes produces their effects but not
vice versa) and for reasoning about counterfactual situations (Pearl, 2000; Sperber et al., 1995).
The current result of disanalogous classification with common-cause and common-effect net-
works extends the importance of distinguishing between causality and correlation to the domain
of categorization, because those two schemas are indistinguishable from one another if one
ignores the direction of the causal arrow.

The representation of causal laws offered by causal-model theory incorporates the principle
that causality-is-not-correlation by proposing that cause and effect features are linked by causal
mechanisms. This representation of causal knowledge is inherently asymmetric because it is
the cause that produces the effect rather than the effect producing the cause (and rather than
the absence of the cause producing the absence of the effect). Moreover, this representation of
causality was key to the success of causal-model theory’s generative approach to calculating
an exemplar’s degree of category membership, because it predicts that populations of category
members will exhibit statistical structure in addition to pairwise correlations between causes
and effects. In particular, causal-model theory predicts—and people apparently expect—that a
common-cause network produces correlations between effects in addition to those between the
effects and the cause. And, both causal-model theory and people expect that a common-effect
network produces higher-order interactions among the causes and the effect. The current finding
that participants considered good exemplars to be exactly those that matched these expectations
provides strong support for causal-model theory’s generative approach to classification on the
basis of asymmetric causal laws.

Another important assumption of causal-model theory is that the causal mechanisms that link
category features are viewed as operating probabilistically rather than deterministically. This
assumption received direct support from the parameter values derived from the quantitative
model fitting. Parameterm, the probability that the causal mechanism will produce its effect,
is a probabilistic version ofcausal sufficiency, where deterministic causality (i.e., the cause
is always sufficient to bring about its effect) appears as a limiting case whenm = 1. In fact,
across all participants the average value ofmwas only 0.270, and causal model fits for only 4
of 72 participants yielded values ofmgreater 0.8. Another assumption of causal-model theory
is that people will allow for the possibility that effect features might have causes other than
those explicitly stated in a category’s causal schema. Parameterbcorresponds to a probabilistic
version ofcausal necessitybecause whenb = 0 an effect is always accompanied by (at least
one of) its causes. In fact, the average value of parameterb was 0.359, and the model fits of
only 12 of the 72 participants yielded a value ofb less than 0.20. The fact that participants
assigned an exemplar some significant chance of category membership even if a cause was
present and its effect absent, or if a cause was absent and its effect present, supports the claim
that people typically treat causal laws probabilistically rather than as a relation of deterministic
necessity and sufficiency.
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Other theorists have proposed asymmetrical and probabilistic representation of causal knowl-
edge. For example,Rehder (in press)has shown that the representational assumptions of
causal-model theory are the same as those implicit inCheng’s (1997)power PC theory of causal
induction (e.g., the currentm parameter corresponds to Cheng’s notion ofcausal power; also
seeGlymour & Cheng, 1998). Working with continuous variables,Waldmann et al. (1995)
has derived some of the same predictions presented here (correlations between effects in a
common-cause network, no correlations among causes in a common-effect network), and
found that the difficulty of learning was greatly influenced by whether the pattern of correla-
tions among features matched the causal model they were led to expect. However, the structural
equation modeling approach adopted by Waldmann et al. does not predict the discounting ef-
fect found with binary variables in the present common-effect condition and which has been
so instrumental in distinguishing causal-model theory from alternative models.

The predictions of causal-model theory have been borne out for a variety of causal networks.
First, although the current experiment used whatWaldmann et al. (1995)have referred to as a
varyingcommon-cause schema (because not all category members possess the common-cause),
I have also tested afixedcommon-cause schema in which all category exemplars possess the
common-cause. The importance of the common cause being fixed rather than varying lies
in the statistical structure of generated exemplars: correlations among the effects that arise
when the common cause is varying will be absent when it is fixed.3 An additional experi-
ment testing this prediction (reported athttp://cogsci.psy.utexas.edu/supplements/) replicated
the first except that F1 in the common-cause condition, and F4 in the common-effect condi-
tion, were described as occurring in 100% of all category members. As predicted, in the fixed
common-cause condition participants treated effect features as if they were independent, that
is, their category membership ratings exhibited no sensitivity to correlations among the ef-
fects. Also as predicted, in the fixed common-effect condition participants continued to exhibit
a discounting effect such that the presence of the first cause feature was taken as stronger
evidence in favor of the common-effect (and hence category membership) than additional
causes.

Second, I have instructed participants on categories where the binary features are arranged
in a causal chain (i.e., F1 causes F2, which causes F3, which causes F4) (Rehder, in press). As
predicted, participants were sensitive to the pattern of correlations expected to be generated by
a causal chain. First, they were strongly sensitive to those feature pairs that should be strongly
correlated (those directly connected by causal links: F1 and F2, F3 and F4, and F3 and F4).
Second, they exhibited weaker sensitivity to those pairs that should be weakly correlated in a
causal chain (those indirectly connected by causal links: F1 and F3, F2 and F4, and F1 and F4).

In the current experiment participants were expected to treat the causal mechanisms between
pairs of features as independent of one another, an interpretation encouraged by the presentation
of each causal link in a separate paragraph with its own information about mechanism. This
situation is presented schematically inFig. 8a, where diamonds represent the location of causal
mechanisms. However, alternative materials could have led participants to assume that each
schema included mechanisms involving more than two features. For example, inFig. 8b, the
common cause feature enables a single mechanism that operates probabilistically but that
produces all three effects when it operates (e.g., a single genetic mutation causes multiple birth
defects). Analogously, the common effect is produced by a single mechanism that requires all

http://cogsci.psy.utexas.edu/supplements/
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Fig. 8. Alternative interpretations of common cause and common effect models.

three causes to be present to operate (e.g., oxygen, fuel, and spark together produce fire4). Once
the pattern of causal mechanisms linking three or more category features is established, it is
straightforward to apply the equations of causal-model theory, such as to the schemas shown
in Fig. 8b.

7.2. Categorization by causal reasoning versus similarity

An important goal of the current research was to determine if the effects of causal knowledge
on categorization could be accommodated within the framework of similarity-based models.
Two possibilities were considered. First, in the Configural-Features Prototype Model infor-
mation about whether a to-be-classified exemplar preserved or broke expected correlations
between features connected by causal links was encoded as the presence or absence of features
on extra dimensions. Second, in the Exemplar-Fragments Model those expected correlations
were encoded in the form of “prior” exemplars stored in memory to which to-be-classified
exemplars are compared. However, both of these proposals for representing causal knowledge
assume that the effect of that knowledge can be fully accounted for in terms of symmetric
correlations between features directly-connected by causal relations. As a result, these models
were unable to account for the effects of causal knowledge attributed to the asymmetries in-
herent in causal relations, such as the higher-order interactions involving cause features in the
common-effect condition.

Of course, besides the Configural-Features and Exemplar-Fragments Models there are many
other proposals that could be considered for how causal knowledge might be represented as
higher-order features, or as prior exemplars stored in memory, and it is possible that one of
these alternative proposals might successfully account for the current results. For example,
although regression analyses were used in this article only as an analytical device to charac-
terize the empirical results, one might consider the possibility that each significantly non-zero
regression weight corresponds to one “feature,” and that categorizers generated their category
membership ratings by matching on those features. However, besides being clearlypost hoc,
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the problem with such a proposal is that it provides no principled explanation for why the
set of “features” used in the common-cause conditions (the four basic features plus two-way
interactions between features) should differ from those used in the common-effect condition
(which in addition found three- and four-way interactions between features).

Alternatively, one might imagine that categorizers mentally generate a representative sample
of category members from their causal models, and then judge category membership by com-
puting the similarity of a new exemplar to that sample. On this account, differences between the
common-cause and common-effect models arise because their respective mentally-generated
samples manifest different patterns of inter-feature correlations. But although such an account
might serve as a process model for how causal-model theory’s likelihood equations are imple-
mented (or approximated) the bulk of the explanatory burden is being carried by the cognitive
structures that generate the mental samples, namely, the causal models themselves.

Rather than searching for representations of causal knowledge that would allow an interpre-
tation of the current categorization results in terms of similarity, I suggest that a more fruitful
approach is to view classification as sometimes involving mental processes other than com-
puting a weighted sum of the number of matching features. In this article I have suggested
that the current results should be characterized as a case ofcategorization as causal reasoning.
On this account, higher-order interactions in, say, a common-effect network are attributed to
reasoning processes that tell us that the first explanation of a common-effect is more important
than subsequent explanations. Other studies demonstrating the influence of prior knowledge
on classification may be usefully understood as instances of causal reasoning. For example,
Wisniewski (1995), found that participants rated artifacts with novel combinations of features
(e.g., “contains peanuts” and “caught an elephant”) as good examples of an animal-capturing
device, presumably because of causal reasoning processes that informed them of the useful-
ness of a trap that contains bait that is attractive to the prey as compared to one that does
not (“contains acorns” and “caught an elephant”). Similarly,Rehder and Ross (2001)found
that objects with completely novel features (e.g., “has a metal pole with a sharpened end” and
“works to gather discarded paper”) were rated as good examples of a novel type of pollution
cleaning device presumably because of causal reasoning processes that informed them of the
usefulness of a device that possesses an instrument to gather the type of pollution as compared
to one that does not (“has a magnet” and “removes mosquitoes”) (for other likely cases of
causal reasoning during categorization, seeHeit, 2001; Murphy & Allopenna, 1994; Pazzani,
1991; Wattenmaker et al., 1986).

One outstanding question concerns how causal models come to be associated with categories
in the first place. In some cases people’s causal models may come from external sources
such as formal education. This may be especially true for scientific concepts for which direct
observations are rare or impossible (e.g., subatomic particles, galaxies, viruses, etc.). In other
cases, causal models may be triggered by the first few category members one encounters.
For example,Rehder and Ross (2001)suggested that initial examples of categories are often
not just observed but rathercomprehended, that is, they spontaneously elicit and combine
with knowledge a person already possesses to construct a new category representation. On this
account, the influence of empirical observations on classification is mediated by the knowledge
structures those observations elicit, and the causal reasoning processes that those structures
subsequently enable (also seeHeit & Bott, 2000; Rehder & Murphy, in press).
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Once a causal model for a category has been established, another important question con-
cerns the nature of the interaction between that model and the subsequent observation of
category members. One possibility is that the causal classification processes proposed here
and traditional similarity-based processes operate side-by-side, each making an independent
contribution to the ultimate categorization decision (Wisniewski & Medin, 1994). Another
is that the information carried by the observations is integrated into the causal model by
the tuning of its parameters. For example, theb parameter may be tuned on the basis of
observations in which an effect occurs in the absence of a cause; them parameter may
be tuned on the basis of observed correlations between causes and effects (for details see
Cheng, 1997; Rehder, in press). Finally, it is important to consider the possibility that once
a causal model takes hold in one’s mental representation of a category, it may be relatively
immune to subsequent observations. For example,Rehder and Hastie (2001)systematically
examined the effects of causal knowledge and empirical observations, and found that empir-
ical observations had little effect on subsequent classification performance when participants
were first provided with causal knowledge.5 Moreover,Rehder (1999)has demonstrated that
causal-model theory yielded better fits to those data sets than the traditional similarity-based
models despite the fact that participants were provided with empirical observations in addi-
tion to causal knowledge. These findings replicate past results that show that when both prior
knowledge and empirical observations are available, performance is often dominated by the
knowledge (Chapman & Chapman, 1967, 1969; Murphy & Wisniewski, 1989; Wisniewski,
1995).

Finally, it is worthwhile comparing the classification performance one expects with a
causal model versus with the exemplars generated by the model (but without the model
itself). Given that the observations are generated from the model, one might predict that
classification-by-model and classification-by-observation should converge. However, classi-
fication-by-observation is also likely to reflect similarity relations among exemplars. For ex-
ample,Rehder and Hastie (2001)presented participants with a sample of exemplars generated
from a common-cause model (but not the model itself) which did not include exemplar 0111
(common cause absent, all effects present), because 0111 is very unlikely to be generated by that
model. Yet, on a subsequent classification test participants granted 0111 a moderately high cate-
gory membership rating, presumably because 0111 was very similar to the frequently-observed
category prototype 1111. That is, classifying on the basis of similarity has the potential to blur
theoretically-important distinctions (such as the one between 0111 and 1111). As a result, in
many cases classification-by-observation may not be equivalent to classification on the basis
of explicit knowledge of the causal rules that generate the observations.

7.3. Causal knowledge and the importance of individual features

Although the emphasis in this article has been on how causal knowledge changes the ac-
ceptability of combinations of features to category membership, an equally important question
was how that knowledge changes the importance of features considered individually. Earlier
research by Ahn and her colleagues (Ahn, 1998; Ahn et al., 2000) suggested that features
would be more heavily weighted to the extent they were more causal, that is, more deeply
embedded in a network of causal relationships. Similarly,Sloman et al. (1998)have proposed
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that features that are “depended on” are less “mutable” (and hence more important to category
membership) than those that are not, where a cause–effect link is an example of a dependency
relation in which the effect depends on the cause. However, these proposals do not account for
the fact that although the common-cause feature was weighed more heavily than its effects,
the common-effect was weighed more heavily than its causes.

These findings replicate those ofRehder and Hastie (2001)who found that both common
cause and common effect features were weighed more heavily than other features under a
wide variety of conditions. These results led Rehder and Hastie to suggest that features are
more heavily weighed to the extent they are involved in many causal relationships regardless
of whether they play the role of causes and effects. a proposal which may be referred to as the
relational centrality hypothesis. However, this proposal is also deficient in not accounting for
Ahn’s and Sloman’s finding that the initial cause in a causal chain is weighed most heavily (it
predicts that features in the middle of a chain should be weighed most heavily because they
are involved in more relationships). It also does not account for the importance of interactions
between features, including the asymmetries found with common-cause and common-effect
networks which has been the main focus of this article.

Another possibility would be to consider a hybrid account in which features are more heavily
weighed both to the extent they are more causal (the causal status hypothesis) and to the extent
they are involved in many relationships (the relational centrality hypothesis). However, there
are three aspects of the current results that this hybrid account fails to account for. First, it
predicts that a common cause feature in a common cause network should be weighed more
heavily than a common effect feature in the common effect network, because whereas they are
both are involved in the same number of causal relationships (three), the common cause is more
“causal” (because it has effects and the common effect does not). Contrary to this prediction,
the regression weight associated with the common cause inFig. 4 (8.2) waslessthan that
associated with the common effect (9.0) (albeit not significantly less). Likewise, it predicts
that the causes in a common effect network should be weighed more heavily than the effects
in a common cause network, because whereas all are involved in the same number of causal
relationships (one), the causes are more “causal” than the effects. In fact, the average regression
weight associated with the common effect’s causes (2.5) was not significantly greater than that
associated with the common cause’s effects (2.0) (p > .20). Finally, this hybrid also does not
account for the presence of interactions between features.

Quantitative model fitting revealed that causal-model theory is able to account for the in-
creased weight associated with features that are either common causes or common effects
(also with the entire profile of inter-feature interactions shown inFig. 4). However, because
of causal-model theory’s asymmetrical view of causal relationships it must have two different
accounts for why common causes and common effects dominate (Ahn & Kim, 2001). On
the one hand, causal-model theory explains the importance of the common effect feature as a
natural consequence of its position in a causal network: because it has many causes it is likely
to be generated, and because it is likely to generated it will be heavily weighted in classifica-
tion judgments. The claim that features increase in importance to the extent they have many
causes is a general prediction of causal-model theory that holds for a variety of causal networks
(Rehder, in press).6 On the other hand, because causes do not become more likely as a natural
consequence of their having many effects (because giving a cause additional effects does not
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make its occurrence more likely) causal-model theory accommodated (but didn’t explain) the
common cause’s importance by adjusting a free parameter (thec parameter) that represents
the likelihood the common cause was present. To explain the finding that causes sometimes
receive greater weight in judgments of category membership,Rehder (in press)has suggested
that people often reason with a more complex causal model than the one with which they were
provided by experimenters. For example, it has been suggested that people often view cate-
gories as being organized around underlying properties or characteristics (sometimes referred
to as anessence) that are shared by all category members and by members of no other cate-
gories, and that essential features cause or generate perceptual features (Gelman et al., 1994;
Gelman & Wellman, 1991; Keil, 1989; McNamara & Sternberg, 1983; Medin & Ortony, 1989;
Rehder & Hastie, 2001; Rips, 1989). In fact,Rehder (in press)has shown that causal-model
theory predicts, and that participants exhibit, a causal status effect with categories that are
described as possessing an essential feature and observable features linked in a causal chain.
These results can be illustrated with the disease example presented earlier. If one is told that
a disease D causes symptom X which causes symptom Y which causes Z, symptom X will
be treated as more diagnostic of D than Y (and Y more diagnostic than Z). Causal-model
theory predicts this result because D generates X with greater reliability than it does Y (and
Y with greater reliability than Z). These results support the claim that the causal status effect
observed in causal chains (Ahn, 1998; Ahn et al., 2000; Sloman et al., 1998), and in the current
common-cause condition, arises because the features that occupy earlier positions in a causal
network are themselves thought to be generated by the unobservable causes that categorizers
treat as defining of category membership (Rehder, in press).

8. Conclusion

This article has proposed that the causal relations that link category features are represented
in terms of asymmetric and probabilistic causal mechanisms, and that category membership is
evaluated on the basis of whether objects were likely to have been generated by those mech-
anisms. Experimental results confirmed that exemplars were rated as good category members
when their features manifested the expectations that causal knowledge induces. The formal-
ization offered by causal-model theory enabled quantitative fits to empirical data, produced
interpretable parameter estimates, and supported rigorous tests against competing models. In
particular, causal-model theory was shown to achieve a superior fit than extensions to tradi-
tional simulate-based models that represent causal knowledge either as higher-order relational
features or “prior exemplars” stored in memory.

Notes

1. The common-cause and common-effect models may be defined such that each cause
feature has its own independentc parameter, each effect feature has its own independent
b parameter, and each causal link has its own independentmparameter. However, initial
model fitting results for the data set reported in this article indicated no significant dif-
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ferences in either the common-cause condition or the common-effect condition between
the parameter estimates for the independentc’s, b’s, andm’s, and so a singlec, m, and
b parameter was used in each model.

2. Average RMSD is the RMSD averaged over the 36 participants in each condition, where
RMSD = SQRT(SSE/(N −P)), SSE= sum of squared error for a participant,N = the
number of data points fit, andP = the number of parameters per model.N = 16 and
P = 4 for all three models presented inTable 5.

3. This difference in the pattern of correlations can be illustrated with the disease exam-
ple presented earlier. When only a certain subpopulation has a disease (a varying-cause
common-cause schema) then the disease’s symptoms will be correlated. In contrast,
when all members of a population have the disease (a fixed-cause common-cause schema),
the symptoms are no longer correlated. This is because the presence of one symptom
does not increase the probability of the presence of the disease (which is already present
with probability 1). Hence, the probability that other symptoms are present also does
not increase.

4. In the Bayes’ net literature the common-effect schema shown inFig. 8ais sometimes
referred to as “fuzzy-or” network whereas the common-effect schema shown inFig. 8b
is sometimes referred to as a “fuzzy-and” networks.

5. AlthoughRehder and Hastie (2001)found that categorizers were sensitive to empirical
featurefrequenciesin the presence of causal knowledge (Spalding & Murphy, 1999;
Wisniewski, 1995). However, there was little evidence that categorizers were sensitive
to the empirical featurecorrelationsthey observed.

6. Although note that an effect feature will become more probable with of additional causes
only when it doesn’t already appear with probability 1 (Rehder, in press, Eq. (3)).
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Appendix A. Configural-Features Prototype Model

The Configural-Features Prototype Model assumes that the four-dimensional stimulus space
used in this article is expanded to include three dimensions that encode whether causal relation-
ships are confirmed or violated. That is, in the common-cause condition each to-be-classified
exemplar has three additional dimensions indicating whether the causal relationships F1 → F2,
F1 → F3, and F3 → F4 are confirmed or violated. Likewise, in the common-effect condition
each exemplar has additional dimensions indicating whether the causal relationships F1 → F4,
F2 → F4, and F3 → F4 are confirmed or violated. In addition, the category prototype P is
represented as 1111111, where the presence of the feature on the fifth, sixth, and seventh
dimension indicates that the causal relationships are confirmed in the prototype. According
to the Configural-Features Prototype Model, the category membership rating assigned to an
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exemplar E would be equal to its similarity to the category prototype P, scaled by a constantK,

Rating(E) = KSim(E, P) = K

( ∏
i=1...7

Si

)

whereSi = 1 if Ei = Pi otherwiseSi = si where 0≤ si ≤ 1. The free parameterss1, s2, s3, and
s4 are feature weights associated with features F1, F2, F3, and F4, respectively, and parameters
s5, s6, ands7 are the weights associated with violating causal relationships.

The Configural-Features Prototype Model was fit to the data from each participant. Initial
model fitting results in the common-cause condition revealed that the estimates for the weight
parameters of the three effect features (i.e.,s2, s3, ands4) did not differ significantly from
one another, and that the estimates of the three parameters associated with violating causal
relationships (i.e.,s5, s6, ands7) also did not differ significantly from one another. As a result,
s2, s3, ands4 were combined into a single parameterse representing the weight associated
with all three effect features, ands5, s6, ands7 were combined into a single parametersv

representing the weight associated with violating causal relationships (ands1 was renamedsc,
as the weight associated with the single cause feature). Likewise, initial model fitting results in
the common-effect condition revealed that the estimates associated with the three cause features
(i.e.,s1, s2, ands3) did not differ significantly from one another, and that the three parameters
associated with violating causal relationships (s5, s6, ands7) did not differ significantly from
one another. Thus,s1,s2, ands3 were replaced with the single parametersc ands5,s6, ands7 were
replaced with the single parametersv (ands4 was renamedse as the weight associated with the
single effect feature). As a result, model fitting in both the common-cause and common-effect
conditions each involved four parameters:K, sc, se, andsv.

Appendix B. Exemplar-Fragments Model

The Exemplar-Fragments Model assumes that categorizers store in memory a category
prototype and also exemplars that represent the causal knowledge (Heit, 1994). The partial
exemplars (or exemplar “fragments”) that represent the common-cause causal relationships
are 11xxand 00xx (representing the expected correlation between features F1 and F2 produced
by the F1 → F2 causal link), 1x1x and 0x0x (representing the F1 → F3 link), and 1xx1 and
0xx0 (representing the F1 → F4 link). For the common-effect condition the exemplars are
1xx1 and 0xx0 (for link F1 → F4), x1x1 andx0x0 (for link F2 → F4), andxx11 andxx00 (for
link F3 → F4). According to the Exemplar-Fragments Model, the category membership rating
assigned to an exemplar E would be equal to its similarity to the category prototype P (1111)
plus the stored exemplars where the relative contribution of these two sources is determined
by parameterg. That is,

Rating(E) = K[(1 − g) Sim(E, P) + g SimExemplars(E)]

whereK is a scaling constant and

SimExemplars(E) =
∑

e∈Exemplars

Sim(e, E)
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Sim(x, y) =
∏

i=1...4

Si

whereSi = 1 if xi = yi otherwiseSi = si where 0≤ si ≤ 1. The free parameterss1, s2, s3,
ands4 are feature weights associated with features F1, F2, F3, and F4, respectively. Parameter
g can be interpreted as a measure of how many copies of the exemplars that represent prior
knowledge are stored in memory relative to the single copy of the prototype 1111.

When computing similarity between a to-be-classified exemplar and the exemplar fragments
representing causal knowledge, I assume an “intersection rule” (Estes, 1994) such that the two
dimensions that have missing values in the stored exemplars have no influence. For example,
in the common-cause condition the similarity of exemplar 0011 to exemplar fragment 11xx
would be (s1 · s2) and its similarity to fragment 0xx0 would (1· s4).

The Exemplar-Fragments Model was fit to the data from each participant. As was the case for
the Configural-Features Prototype Model, initial model fitting in the common-cause condition
revealed that the estimates associated with the three effect features (i.e.,s2, s3, ands4) did not
differ significantly from one another, and sos2, s3, ands4 were replaced with the single weight
parameterse, ands1 was renamedsc. Likewise, initial model fitting results in the common-effect
condition revealed that the estimates associated with the three cause features (i.e.,s1, s2, and
s3) did not differ significantly from one another, and so were replaced with the single salience
parametersc ands4 was renamedse. As a result, model fitting in both the common-cause and
common-effect conditions each involved four parameters:K, sc, se, andg.
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