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Abstract
This study investigated the roles of problem structure and strategy use in problem encoding. Fourth-

grade students solved and explained a set of typical addition problems (e.g., 5+ 4 + 9 + 5 = ) and
mathematical equivalence problems (e.g., 4+ 3 + 6 = 4 + or 6 + 4 + 5 = + 5). Next, they
completed an encoding task in which they reconstructed addition and equivalence problems after viewing
each for 5 s. Equivalence problems of the form 4+ 3 + 6 = 4 + overlap with a perceptual pattern
found in traditional arithmetic problems (i.e., answer blank in final position), and students’ encoding
was poorest on problems of this type. Individual differences in encoding the equivalence problems were
related to variations in strategy use. Some students solved blank-final equivalence problems using the
standard arithmetic strategy of performing all given operations on all given numbers. These students made
more errors in encoding problem structure, but fewer errors in encoding the numbers, than did students
who solved the problems using correct or other incorrect strategies. Moreover, students who expressed
many strategies for solving the blank-final equivalence problems made fewer errors in encoding problem
structure, but more errors in encoding the numbers, than did students who expressed only a single strategy.
Results highlight that encoding is intended to guide action and that prior experience can simultaneously
facilitate and interfere with accurate encoding.
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

To solve a problem correctly, a solver must encode, or internally represent, the impor-
tant features of the problem (Chase & Simon, 1973; Kaplan & Simon, 1990; Siegler, 1976).
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However, solvers do not always encode all problem features accurately. Indeed, it is not uncom-
mon for different individuals, given the same problem, to encode different features. Research
suggests that individual differences in encoding depend on at least two factors: (1) the extent
to which a given problem conforms to the perceptual patterns individuals have encountered
in past problem-solving experiences (Chase & Simon, 1973; Knoblich, Ohlsson, Haider, &
Rhenius, 1999) and (2) the strategies individuals use to solve the problems (Siegler, 1976).
Prior studies regarding the effects of problem structure and strategy use on encoding have fo-
cused exclusively on cases in which prior problem-solving experience facilitates future success.
The present paper examines how problem structure and strategy use are related to encoding in
a domain in which prior experience does not always lead to success on future problems—the
domain of mathematics.

1.1. Encoding and the match between problem structure and previously-encountered
perceptual patterns

Mathematics is a domain in which early competence with “basic skills” (e.g., arithmetic
operations) is thought to be necessary for advanced thinking and problem solving. Traditional
American mathematics curricula are designed around this assumption. Students learn arith-
metic operations for many years before they are introduced to complex equations. Indeed, data
from the Third International Mathematics and Science Study (Beaton et al., 1996) indicate that
American students spend substantial class time reviewing basic arithmetic skills throughout
the elementary and middle school years (see alsoValverde & Schmidt, 1997). Given this early
and elongated experience with arithmetic, students are well versed in the perceptual patterns
of arithmetic problems by late elementary school.

In some respects, the perceptual patterns encountered in arithmetic problems are not pre-
dictive of those encountered in more complex equations. In arithmetic problems, the equal
sign and answer blank are regularly presented at the end of the problem (e.g., 4+ 7 = ;
4 − 3 + 6 = ). We propose that students extract this perceptual pattern from their experi-
ence with arithmetic problems. Past research suggests that this should lead to fast and accurate
encoding when problems conform to the familiar pattern (e.g.,Chase & Simon, 1973). How-
ever, many higher-level problems do not conform to the pattern. For example, in the problem
“2 × + 6 = 20” neither the equal sign nor the answer blank is at the end of the problem.
Thus, knowledge of the perceptual pattern cannot help (and may hurt) students’ performance.

When knowledge derived from early experience does not correspond to information en-
countered in future endeavors, the likelihood of error increases. Traditionally, this is referred
to as the effect of “top-down” processing (e.g.,Bruner, 1957; Rumelhart, 1980). Contempo-
rary theorists (e.g.,Kuhl, 2000; Zevin & Seidenberg, 2002) explain this effect in terms of the
“entrenchment” of learned patterns. According to this view, the patterns with which individuals
gain experience become entrenched, and subsequently, novel information that overlaps with
the patterns is assimilated to those patterns. This is beneficial when information matches the
learned patterns, but can lead to errors when it does not (Best, McRoberts, & Goodell, 2001;
Flege, Yeni Komshian, & Liu, 1999). If a stimulus overlaps with an entrenched pattern but does
not match it exactly, the stimulus may be encoded inaccurately. However, if a stimulus bears
little resemblance to an entrenched pattern, an individual may rely on sensory information
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(i.e., “bottom-up” processes) to encode the stimulus features. Thus, the match between en-
trenched perceptual patterns and the structure of external stimuli determines how information
is encoded.

In the present study, we focus on the perceptual pattern of having “= ” at the end of
the problem. We predict that the match between this pattern and a given problem’s structure
will influence encoding. If a problem matches the pattern, it will be encoded accurately. If
a problem overlaps with the pattern but does not match it exactly, it will be assimilated and
encoded inaccurately. If a problem neither matches nor overlaps with the pattern, it will not be
assimilated, and encoding errors will be less likely and less systematic.

We focus on fourth-grade students’ encoding of two classes of problems: (1) typical addition
problems (e.g., 3+ 4 + 5 + 3 = ), which match the pattern of having the equal sign and
answer blank at the end of the problem, and (2) mathematical equivalence problems, which have
addends on both sides of the equal sign, and therefore, do not match this pattern. We used two
types of equivalence problems: those with the blank in final position (e.g., 3+ 4 + 5 = 3 + )
and those without the blank in final position (e.g., 3+ 4 + 5 = + 5). We chose fourth-grade
students because they have had years of experience with arithmetic, but no experience with
higher-level problems such as algebraic equations. Mathematical equivalence problems are not
typically included in traditional elementary mathematics curricula (Perry, 1988).

Let us consider how equivalence problems relate to the pattern of having “= ” at the end.
Blank-final problems overlap with the pattern, whereas non-blank-final problems do not. If the
perceptual pattern becomes entrenched as a result of students’ early experience with arithmetic,
fourth-grade students should assimilate the blank-final problems to the pattern and misencode
them (as if they are typical addition problems). Students should be less likely to misencode the
non-blank-final problems because they do not overlap with the pattern (cf.Best et al., 2001).

The extent to which a given problem conforms to previously encountered perceptual patterns
is not the only source of systematic differences in problem encoding. Indeed, there are surely
individual differences in encoding even within a given problem type. Past work suggests that
strategy use is highly correlated with encoding performance. We turn next to this issue.

1.2. Encoding and strategy use

Many theories predict systematic relations between encoding and strategy use. Previous
studies of this issue have examined performance as a function of age or expertise (Chi, 1978;
Chi, Feltovich, & Glaser, 1981; Dean & Malik, 1986; Morales, Shute, & Pellegrino, 1985;
Siegler & Chen, 1998). Older children and experts tend to use more sophisticated strategies,
and to encode problems better, than younger children and novices.

There are several potential interpretations of the observed relations between encoding and
strategy use, including the possibility that they are due to a third factor, such as time on task.
However, in this paper, we focus on two specific accounts that posit direct links between
encoding and strategy use. The first is based on the skill acquisition literature, and we refer
to it here as the “freed-resources account.” This account assumes a fixed-capacity model of
attention, and suggests that the more highly practiced and proceduralized a strategy is, the fewer
cognitive resources are needed for implementing it (Kotovsky, Hayes, & Simon, 1985; Shiffrin
& Schneider, 1977). According to this view, when a strategy is highly practiced, resources are
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“freed up,” allowing the solver to encode other aspects of the stimulus, including important
problem features and relations among those features (cf.Shrager & Siegler, 1998). The second
account is based on the assumption that encoding is intended to guide action. We refer to it as
the “action-primacy account.” This account suggests that when a strategy is highly practiced,
the solver will encode only those problem features necessary for executing the strategy (cf.
Fowler, 1986; Gibson, 1979).

Prior studies cannot distinguish between these accounts because they have focused ex-
clusively on domains in which correct strategies are well learned or highly practiced. If an
individual with a highly-practiced correct strategy encodes problems more accurately than
an individual with an incorrect or inefficient strategy, it could be due either to the individual
having sufficient resources available to encode all of the problem features, or to the individual
encoding the features needed to execute the correct strategy. The present study distinguishes
between these alternatives because it focuses on a domain in which the most highly practiced
strategy is an incorrect one. If encoding depends on resource availability, then students who use
a highly-practiced strategy should encode problems accurately. In contrast, if encoding depends
on the strategies students use, then students who use a highly-practiced strategy should encode
problems poorly.

Through their experience with typical arithmetic problems, students learn to perform all
given operations on all given numbers to reach a solution (e.g., 2×3 + 7 = 13). After years of
practice, this strategy is highly proceduralized. However, performing all given operations on all
given numbers is not an appropriate strategy for solving certain equations, such as “3+ 4+ 5 =
3 + .” Nevertheless, when solving such a problem, many elementary students add all the
numbers and put “15” in the blank (Alibali, 1999; McNeil & Alibali, 2000, 2002).

Students’ use of this “add all” strategy provides us with a unique opportunity to ex-
amine whether the freed-resources account or the action-primacy account better character-
izes encoding performance. The freed-resources account predicts that students who use the
highly-practiced “add all” strategy should encode problems accurately. In contrast, the action-
primacy account argues that solvers should encode only those problem features necessary to
implement their solution strategy. For the “add all” strategy, the only necessary features are
the operators (e.g., plus signs) and the numbers. Thus, students who use the “add all” strategy
should encode the operators and numbers accurately, but they may encode aspects of the prob-
lem structure, such as the position of the equal sign, inaccurately (e.g., they may misencode
3 + 4 + 5 = 3 + as 3+ 4 + 5 + 3 = , but not as 3× 4 × 6 = 3 × ).

In examining the relationship between encoding and strategy use, we consider the entire
repertoire of strategies that students display across problems (Alibali, 1999; Alibali, McNeil,
& Perrott, 1998). This allows us to examine relations between strategy variability and en-
coding. The freed-resources account predicts that encoding performance should decrease as
strategy variability increases. Individuals expend resources in managing multiple, compet-
ing strategies and in selecting one to execute (Goldin-Meadow, Alibali, & Church, 1993;
Goldin-Meadow, Nusbaum, Garber, & Church, 1993; Siegler, 1989), so as the number of
strategies in their repertoires increases, they have fewer resources available for encoding. Con-
versely, the action-primacy account predicts that encoding performance should increase as
strategy variability increases. According to this account, individuals allocate attention to the
problem features necessary for executing potential strategies (Luchins & Luchins, 1959). Thus,
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as the number of strategies in individuals’ repertoires increases, the number of problem features
they encode also increases.

In sum, the present study examines the relationship between problem encoding and (1) the ex-
tent to which given problems match the perceptual patterns encountered in past problem-solving
experiences and (2) the strategies used to solve the given problems. In keeping with past re-
search (e.g.,McNeil & Alibali, 2000; Siegler, 1976), we assess encoding and strategy use with
two separate tasks: problem reconstruction and problem solution.

2. Method

2.1. Participants

Participants were 70 fourth-grade students (28 boys, 42 girls; ageM = 10;2, range 9;6–
10;10). Students were drawn from four urban parochial schools that used traditional mathe-
matics curricula.

2.2. Stimuli

Stimuli were typical addition problems and mathematical equivalence problems arranged in
mixed blocks. Each block consisted of one problem of each of the four types shown inTable 1.
Problems were not repeated across blocks.

2.3. Procedure

Students were tested individually. They completed two tasks in fixed order: (1) a problem-
solving test (used to assess strategy use) and (2) a reconstruction test (used to assess encoding).1

In the problem-solving test, 12 problems (three blocks, each consisting of one problem of each
of the four types) were presented one at a time by an experimenter at the blackboard. Students
solved each problem and explained their solutions. In the reconstruction test, 16 novel prob-
lems (four blocks, each consisting of one problem of each of the four types) were projected
onto a plain wall for 5 s each. After each problem was removed, students wrote the problem
on the blackboard. Students were instructed to write each problem “exactly as they saw it.”
Students received no feedback about accuracy on either task. After the session, each student
received a brief lesson about mathematical equivalence.

Table 1
Problems used in the study

Problem type Example

Typical addition with repeated addend 3+ 6 + 7 + 3 =
Typical addition without repeated addend 4+ 8 + 5 + 7 =
Blank-final equivalence 4+ 3 + 5 = 4 +
Non-blank-final equivalence 6+ 8 + 4 = + 4
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Table 2
Incorrect and correct strategies for solving the problem 3+ 4 + 5 = + 5

Strategy Solution Sample verbal explanation Sample gestured explanation

Add all 17 “I added 3 and 4 and 5 and 5.” Right-hand point to 3, 4, left 5, right 5.
Add to equal sign 12 “I added 3 plus 4 plus 5, and

that equals 12.”
Right-hand point to 3, 4, left 5, solution.

Add to equal sign
& add all

12 & 17 “I added 3 and 4 and 5, and I
put 12 in the blank, and then I
added the 5 and put down 17.”

Right-hand point to 3, 4, left 5, first
solution, right 5, second solution.

Carry 3 “There was a 3 here, so I put 3.” Right-hand point to 3, solution.
Idiosyncratic 1 “I just guessed.” No gesture.
Equalize 7 “3 plus 4 plus 5 equals 12, and

7 plus 5 equals 12.”
Right-hand point to 3, 4, left 5, hand
down. Left-hand point to solution, right 5.

Add–subtract 7 “I added 3 plus 4 plus 5, and
then I took 5 away from that.”

Right-hand point to 3, 4, left 5, hand
down. Left-hand point to right 5.

Group 7 “I saw the two 5s, so I just
added the 4 and the 3, and
that’s 7.”

Right-hand point to right 5 and
left-hand point to left 5, hands down.
Right-hand point to 4, 3, solution.

2.4. Coding

2.4.1. Strategy use
For each equivalence problem, we identified the strategy each student used to arrive at a

solution. For many problems, this could be inferred from the solution itself (e.g., for 3+ 4+ 5 =
3 + , if the student’s solution was 15, the “add all” strategy was inferred). If the solution
was ambiguous, the strategy was assigned based on the explanation provided in speech, and if
both solution and speech were ambiguous, the strategy was assigned based on the explanation
provided in gesture. We coded spoken and gestured problem explanations using the system
developed byPerry, Church, and Goldin-Meadow (1988). Strategies fell into eight categories,
shown inTable 2.

2.4.2. Primary strategy groups
Students were categorized into one of three primary strategy groups based on the strategies

they used to solve the equivalence problems. Many students (N = 30) used different strate-
gies for blank-final and non-blank-final problems, so primary strategy groups were assigned
separately for the two problem types. Students in thecorrect group (blank-finalN = 29;
non-blank-finalN = 24) used a correct strategy (e.g., “equalize”) consistently on at least two
of the three problems of a single type. Students in theadd-all group (blank-finalN = 29,
non-blank-finalN = 11) used the “add all” strategy on at least two of the three problems
of a single type. Students in theother-incorrectgroup (blank-finalN = 11, non-blank-final
N = 35) used one of the other incorrect strategies (e.g., “carry”) consistently on at least two
of the three problems of a single type. One student was excluded from the analyses involving
primary strategy because she did not use one strategy consistently on at least two of the three
problems of either type.
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2.4.3. Strategy repertoire
We defined the strategy repertoire as the complete set of strategies that a student expressed

when explaining his or her solutions to problems of a single type. As in past work (Alibali,
1999; Alibali et al., 1998), we considered students’ spoken and gestured explanations as well
as their problem solutions in evaluating strategy repertoires. We assessed repertoires separately
for the two types of equivalence problems. Students were categorized based on the total number
of different strategies they expressed:one strategy(blank-finalN = 24; non-blank-finalN =
27), two different strategies(blank-finalN = 32; non-blank-finalN = 33), orthree different
strategies(blank-finalN = 13; non-blank-finalN = 9). One student was excluded from
the analyses involving strategy repertoires because she expressed more than three different
strategies for problems of a single type. It was the same student who was excluded from the
analyses involving primary strategy (see above).

2.4.4. Encoding
Each reconstruction was scored as correct or incorrect, and errors were classified as either

numbererrors orconceptualerrors. As shown inTable 3, number errors involved misencoding
the numbers or the order of the numbers in the problem. Conceptual errors involved misen-
coding the structure of the equation (e.g., omitting the equal sign). Cases in which the right
addend was omitted altogether and cases in which equivalence problems were converted to
typical addition problems were classified as conceptual errors.

2.4.5. Reliability
To establish reliability, a second coder rescored the data for 17 participants. For the re-

construction test, reliability was 98% (N = 272) for classifying reconstructions as correct
or incorrect and 99% (N = 88) for classifying errors as number or conceptual errors. For
the problem-solving test, reliability was 93% (N = 102) for strategies expressed in speech
on equivalence problems. For strategies expressed in gesture, the initial reliability sample re-
vealed marginal reliability (73%), so the entire dataset was re-coded by a second coder, and all
discrepancies between the coders were examined and resolved by a third coder. These checked
gesture codes were used in evaluating students’ strategy repertoires. Reliability was 100%
(N = 34) for primary strategy group and 94% (N = 34) for strategy repertoire group.

Table 3
Reconstruction errors

Error type Example

Number errors 4+ 3 + 6 = 4 +
4 + 5 + 3 = 4 +

Conceptual errors 4+ 3 + 5 + 4 =
4 + 3 + 5 + 4
4 + 3 + 5 = + 4
4 + 3 + 5 = 4
4 + 3 + 5 =

Note.All examples are for the given problem 4+ 3 + 5 = 4 + .
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3. Results

Unless otherwise noted, all reported statistics are significant with alpha set at .05.

3.1. Overall patterns

3.1.1. Problem solving
On the typical addition problems, all students used the correct strategy of adding up all

the numbers. On the six equivalence problems, there was a bimodal distribution, with most
students solving at least five problems either correctly (N = 24) or incorrectly (N = 39).
Seven students solved between two and four equivalence problems correctly. Four of these
seven were unsystematic in their use of a correct strategy, and the remaining three switched
from an incorrect to a correct strategy across blocks. These three students who improved across
blocks were excluded from the analyses involving primary strategy and strategy repertoire;
however, results are unchanged if they are not excluded. One of these three students was the
student who had already been excluded for reasons mentioned in the coding section; thus, the
final N for these analyses was 67.

3.1.2. Encoding
Encoding performance was highly variable across students. Collapsing across the 16 prob-

lems, students made more conceptual errors (M = 4.97, SE = 0.52) than number errors
(M = 1.50, SE = 0.17). Students’ total number ofconceptualerrors (i.e., errors in encod-
ing the structure of the equation) spanned the range from 0 to 16 (median= 4), with each
value represented by at least one student. On typical addition problems, the most common
conceptual error was omitting the equal sign (e.g., reconstructing 3+ 4 + 5 + 3 =
as 3+ 4 + 5 + 3). On equivalence problems, students made a wide variety of conceptual
errors. They sometimes assimilated the problems to the perceptual pattern of having “= ”
at end and converted equivalence problems to typical addition problems. Students also made
less systematic conceptual errors, such as omitting the equal sign, omitting the right plus sign,
or omitting the right addend (e.g., reconstructing 3+ 4 + 5 = 3 + as 3+ 4 + 5 = 3 ).
Students’ total number ofnumbererrors (i.e., errors in encoding the particular numbers in the
equation) ranged from 0 to 6 (median= 1), with each value within that range represented by
at least one student.

Students’ encoding improved across blocks,F(3, 207) = 13.28,MSE= 0.55. The improve-
ment was as would be expected with gradual learning over time, and there was no evidence of
an abrupt shift in students’ reconstruction errors across any of the blocks (first blockM = 1.71,
SE= 0.16; second blockM = 1.27, SE= 0.16, third blockM = 1.13, SE= 0.14, fourth
blockM = 0.96,SE= 0.14).

3.2. Effects of problem type on encoding

We conducted a 4 (problem type: blank-final equivalence, non-blank-final equivalence,
typical addition-repeated addend, and typical addition-non-repeated addend)× 2 (error type:
conceptual or number) repeated measures ANOVA, with number of encoding errors as the
dependent measure. There were significant main effects of problem type,F(3, 207) = 56.81,
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Fig. 1. Mean number of conceptual and number encoding errors students produced on each of the four problem
types. The error bars represent standard errors.

MSE = 0.42, and error type,F(1, 69) = 33.16, MSE = 3.18, as well as their interaction,
F(3, 207) = 3.02,MSE= 0.88.

As predicted, students’ encoding varied systematically across problem types (seeFig. 1).
Students made more errors encoding blank-final equivalence problems than non-blank-final
equivalence problems or typical addition problems. For blank-final problems, students some-
times reconstructed the problems as typical addition problems (M = 0.80,SE= 0.13). This
type of error was exceedingly rare on non-blank-final problems (M = 0.03, SE= 0.02). Of
the 52 students who made at least one conceptual error on the blank-final problems, 30 (58%)
reconstructed at least one as a typical addition problem. Of the 32 students who made at least
one conceptual error on non-blank-final problems, only one (3%) reconstructed at least one as
a typical addition problem.

Overall, students made more conceptual errors than number errors. However, the strength
of this effect varied across problem types. As seen inFig. 1, the greatest difference between
conceptual and number errors was on blank-final equivalence problems, and the smallest dif-
ference was on non-blank-final equivalence problems. This may be due to students’ accurate
encoding performance on non-blank-final problems (i.e., floor effects on errors). In the follow-
ing section, we consider performance for each equivalence problem type separately, and we
examine the relationship between encoding and strategy use.

3.3. Relations between encoding and strategy use

Prior research has shown that students who use correct strategies to solve problems encode
the problems more accurately than students who use incorrect strategies. This finding was repli-
cated in the present study. For present purposes, however, the crucial comparison is between
students who used the highly-practiced “add all” strategy and those who used other incorrect
strategies. According to the freed-resources account, students who used “add all” should encode
problems more accurately than students who used other incorrect strategies. In contrast, accord-
ing to the action-primacy account, students who used “add all” should encode the numbers, but
not the problem structure, more accurately than students who used other incorrect strategies.



460 N.M. McNeil, M.W. Alibali / Cognitive Science 28 (2004) 451–466

We also examined the effects of strategy variability on encoding. According to the freed-
resources account, if a student’s repertoire contains multiple strategies, the student will expend
resources in managing the competing strategies and selecting one to execute. He or she may
not have sufficient resources available for encoding extraneous problem features, so encoding
should be relatively poor. In contrast, according to the action-primacy account, such a student
will consider multiple strategies, and this will require attention to the problem features needed
for each potential strategy. Consequently, encoding should be relatively good.

3.3.1. Blank-final problems
To examine relations between primary strategy group, strategy variability, and encoding

performance, we conducted a 3 (primary strategy group: correct, add-all, or other-incorrect)× 3
(strategy repertoire group: one, two, or three)× 2 (error type: conceptual or number) mixed-
factor ANOVA (N = 67), with repeated measures on error type, and number of encoding
errors on the blank-final equivalence problems as the dependent measure. The effect of error
type reported above was significant,F(1, 58) = 11.13,MSE= 2.00. Three additional effects
were significant: the main effect of primary strategy group,F(2, 58) = 4.72,MSE= 0.46, the
interaction of error type and primary strategy group,F(2, 58) = 3.29, MSE= 2.00, and the
interaction of error type and strategy repertoire group,F(2, 58) = 5.23,MSE= 2.00.

As predicted, students’ primary strategy group was associated with encoding performance
(seeFig. 2). A planned contrast indicated that students in the correct group made fewer er-
rors overall than students in the two incorrect groups,F(1, 58) = 18.23, replicating prior
research. However, the comparison of greatest interest is between students who used “add all”
and students who used other incorrect strategies. According to the action-primacy account,
students who used “add all” should encode the numbers accurately, but the problem structure
inaccurately. The interaction of error type and primary strategy group supports this prediction.
Moreover, the planned interaction contrast examining the difference in errors between stu-
dents in the add-all group and students in the other-incorrect group indicates that, as expected,

Fig. 2. Mean number of conceptual and number encoding errors as a function of the primary strategy used to solve
the blank-final problems on the problem-solving test (correct, add all, or other incorrect). The error bars represent
standard errors.
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Fig. 3. Mean number of conceptual and number encoding errors as a function of strategy repertoire group on
blank-final problems on the problem-solving test. The error bars represent standard errors.

students in the add-all group made more conceptual errors but fewer number errors than stu-
dents in the other-incorrect group,F(1, 58) = 7.37,MSE= 2.00.

Students in the add-all group frequently encoded equivalence problems as typical addition
problems. Considering students who made at least one conceptual error on the blank-final prob-
lems, 19 of 25 students in the add-all group (76%) reconstructed at least one blank-final problem
as a typical addition problem (e.g., reconstructed “3+ 4 + 8 + 3 = ” as “3 + 4 + 8 =
3 + ”), whereas only 4 of 10 students (40%) in the other-incorrect group did so,χ2(1, N =
35) = 4.11. Thus, when they made errors, students in the add-all group often encoded only
those features of equivalence problems needed to execute their highly-practiced strategy.

Strategy variability was also associated with encoding performance; however, the relation-
ship depended on error type (seeFig. 3). Conceptual errors tended to decrease, but number
errors tended to increase, as number of strategies increased. Thus, the size of students’ strategy
repertoire was both positively and negatively related to encoding. We return to this issue in the
discussion.

3.3.2. Non-blank-final problems
For the non-blank-final problems, a parametric analysis would be unwarranted because of

floor effects (i.e., few encoding errors), so we used non-parametric statistics to examine the
relationship between strategy use and encoding. We used logistic regression to predict the
probability that students made at least one conceptual encoding error. The predictor variables
included primary strategy group and strategy repertoire group. Consistent with the analysis
of blank-final problems, the effect of strategy group on the probability of making at least one
conceptual error was significant when controlling for strategy repertoire group, Wald(2, N =
67) = 5.91,p = .05. However, the effect of strategy repertoire group was not significant when
controlling for primary strategy group, Wald(2, N = 67) = 0.14.

Students in the correct strategy group were less likely than students in the incorrect strat-
egy groups to have made at least one conceptual error in encoding non-blank-final problems
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(8 of 24 vs. 24 of 43),β = −2.764,z = 2.25. The model estimates that the odds of making
at least one conceptual error are more than 15 times lower for students in the correct group
than for students in the incorrect groups. Students in the add-all group were more likely than
students in the other-incorrect group to make at least one conceptual error (9 of 11 vs. 15 of
32), β = 1.590,z = 1.84, p = .07. The model estimates that odds of making at least one
conceptual error are almost five times higher for students in the add-all group than for students
in the other-incorrect group. However, this effect is only marginally significant, so it should
be interpreted with caution.

4. Discussion

Our findings suggest that encoding is influenced by the extent to which problem structure
matches previously learned perceptual patterns. Students’ encoding was poorest on blank-final
equivalence problems, which overlap with but do not conform to the pattern of having “= ”
at the end of the problem. Students sometimes assimilated blank-final equivalence problems
to the pattern and encoded them as if they were typical addition problems. Thus, experience
with particular patterns in a domain can hinder encoding performance when those patterns do
not match patterns that are encountered subsequently.

It is worth highlighting that students’ encoding depended on perceptual features of the prob-
lems, rather than on the conceptual structure of the problems. Conceptually, the blank-final
problems are identical to the non-blank-final problems, and neither conforms to the preex-
isting category of typical addition problems. If a problem’s conceptual relationship to pre-
existing categories dictated how it is encoded, one would expect students to encode typical
addition problems accurately and both types of equivalence problems inaccurately. In the
present study, students performed well on typical addition problems and poorly on blank-final
equivalence problems. However, they performed well on non-blank-final equivalence prob-
lems. Thus, encoding did not depend on whether students had a preexisting category within
which to classify the problems. Instead, encoding depended on perceptual features of the
problems.

The present study revealed systematic relationships between encoding and strategy use.
The findings are consistent with the classic finding that individuals who use correct strategies
encode problems more accurately than individuals who use incorrect strategies. Unlike prior
studies, however, we demonstrated this relationship in a sample in which strategy use is not
confounded with age or domain experience. All of the participants were about the same age,
and they had comparable domain experience, because all were in fourth grade. Moreover, the
present study provided a means for distinguishing between two possible accounts of the classic
finding: the freed-resources account and the action-primacy account.

Our results are consistent with the action-primacy account, which maintains that solvers en-
code only those problem features necessary for guiding action. Students who used the “add all”
strategy to solve equivalence problems encoded the numbers more accurately, but the problem
structure less accurately, than students who used other incorrect strategies. Students accurately
encoded only those features of the problem necessary for executing their highly-practiced
“add all” strategy, and they disregarded other problem features.
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The observed relationship between the number of strategies in students’ repertoires and
encoding performance also supports the action-primacy account. For blank-final problems,
students who considered a variety of strategies to solve the problems made fewer concep-
tual errors than did students who considered only a single strategy. Thus, heightened strategy
variability is associated with more accurate encoding of problem structure. Problem solvers
who use only a single strategy encode only those problem features relevant to that particu-
lar strategy, and they may fail to encode other problem features. In contrast, problem solvers
who have many different strategies in their repertoires need to choose among those strate-
gies. They may encode many problem features in an effort to choose among available strate-
gies, or they may use the encoded problem features to construct a new strategy. Consistent
with this view, past work (Goldin-Meadow, Alibali, & Church, 1993) has suggested that in-
dividuals who exhibit variability in their strategy use may be particularly open to encoding
instruction-related information. Some researchers (e.g.,Grunow & Neuringer, 2002) have sug-
gested that variability itself increases an individual’s sensitivity to environmental change and
facilitates learning.

Although students who exhibited variability in their strategy use made fewer conceptual
encoding errors, students who expressed only a single strategy made fewer number errors.
This is also not surprising when considered in the context of the action-primacy account.
When a solver has a single, highly-practiced strategy, he or she already has a strategy on hand,
and thus, can quickly turn attention to encoding the problem features that are required for
executing that strategy (e.g., the numbers).

Overall, the present findings support the action-primacy account. Nonetheless, the observed
associations between encoding and strategy use are just that—associations. The present study
cannot address whether differences in strategy use and strategy variability cause encoding
differences or vice versa. Some past work has shown that changes in encoding lead to changes
in strategy use (e.g.,Alibali et al., 1998; Siegler, 1976); however, the action-primacy account
suggests that the reverse may be possible in some cases. The likely resolution is that encoding
and strategy use are tightly coupled, with small changes in one leading to small changes in
the other in an iterative fashion (Rittle-Johnson, Siegler, & Alibali, 2001). The action-primacy
account makes specific predictions about when encoding should inform strategy construction
and when strategy knowledge should drive encoding. Specifically, when individuals do not
have a highly-practiced strategy on hand, their intended action will be to devise a strategy. In
these cases, individuals will encode features to use in the construction of new strategies. In
contrast, when individuals have a highly-practiced strategy on hand, that strategy will dictate
encoding, and they will encode only those features necessary for executing it. We are currently
conducting experiments to test these hypotheses.

At least two implications for instruction can be drawn from the present findings. First,
educators should be aware of the costs of drill on problems that do not directly map on to
future endeavors. In the present study, a perceptual pattern and a strategy that students learned
from their experience with arithmetic interfered with encoding of novel equations. This leads
to the unintuitive prediction that students with stronger arithmetic skills may be more at risk for
some types of difficulties at the transition to algebra. We are currently testing this prediction. At
a minimum, when introducing new problem types, educators may wish to highlight explicitly
how they differ structurally from familiar problems.
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Second, most fourth-grade students do not have a good understanding of the syntax of equa-
tions. Conceptual errors were frequent, and many students omitted the equal sign altogether,
even on typical addition problems. These findings converge with other work indicating that
understanding of the equal sign is limited in children in this age range (Baroody & Ginsburg,
1983; Kieran, 1981; McNeil & Alibali, 2000). Understanding of equations should be a target
for instruction in elementary school.

In sum, students use their knowledge of prior perceptual patterns as well as their knowl-
edge of highly-practiced strategies to encode problems efficiently. The present study showed
that (1) encoding suffers when problems overlap with, but do not directly correspond to,
previously-learned perceptual patterns and (2) individual differences in strategy use and strat-
egy variability are intimately related to variations in encoding. These results highlight that
encoding is intended to guide action and that prior experience can simultaneously facilitate and
interfere with accurate encoding. Thus, to understand what students notice in problem-solving
situations, it is essential to consider what they have learned in the past.

Note

1. In keeping with past work (Chase & Simon, 1973; Siegler, 1976), we utilize performance
on a reconstruction task as a measure of encoding. However, given that we do not have a
looking time measure to corroborate this assumption, an equally plausible interpretation
is that students encode the problems accurately and then use their knowledge of arith-
metic patterns to distort the problems in the reconstruction process. Recently, we created
a recognition version of the reconstruction measure of problem encoding to address this
alternative hypothesis (McNeil & Alibali, 2000, 2002). Students are given a sheet of
paper with seven problems on it. One of the problems is an equivalence problem in its
correct form (e.g.,a + b + c = a + ). The other six problems depict errors students
typically make when reconstructing equivalence problems, including the typical addi-
tion error (a + b + c + a = ). After viewing an equivalence problem for 5 s, students
are asked to find and circle the problem they just saw. We have found this measure to be
highly correlated with the reconstruction measure used in the present study, suggesting
that errors do not lie in the process of reconstruction itself.
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