
Unsupervised Discovery of Nonlinear Structure
Using Contrastive Backpropagation

Geoffrey Hinton, Simon Osindero, Max Welling, Yee-Whye Teh
Department of Computer Science, University of Toronto

Received 1 September 2005; received in revised form 7 January 2006; accepted 12 January 2006

Abstract

We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear,
multilayer neural network in which the activity of each neuron-like unit makes an additive contribution
to a global energy score that indicates how surprised the network is by the data vector. The connection
weights that determine how the activity of each unit depends on the activities in earlier layers are learned
by minimizing the energy assigned to data vectors that are actually observed and maximizing the energy
assigned to “confabulations” that are generated by perturbing an observed data vector in a direction that
decreases its energy under the current model.

Keywords: Neural networks; Backpropagation; Unsupervised learning; Topographic maps;
Distributed representations; Energy-based models

The backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) trains the units in
the intermediate layers of a feedforward neural net to represent features of the input vector
that are useful for predicting the desired output. This is achieved by propagating information
about the discrepancy between the actual output and the desired output backward through
the net to compute how to change the connection weights in a direction that reduces the dis-
crepancy. In this article we show how to use backpropagation to learn features and con-
straints when each input vector is not accompanied by a supervision signal that specifies the
desired output.

When no desired output is specified, it is not immediately obvious what the goal of learning
should be. We assume here that the aim is to characterize the observed data in terms of many
different features and constraints that can be interpreted as hidden factors. These hidden fac-
tors could be used for subsequent decision making or they could be used to detect highly im-
probable data vectors by using the global energy. We define the probability that the network as-

Cognitive Science 30 (2006) 725–731
Copyright © 2006 Cognitive Science Society, Inc. All rights reserved.

Correspondence should be addressed to Geoffrey E. Hinton, Department of Computer Science, University of
Toronto, 6 Kings College Road, Toronto, Canada M5S 3G4. E-mail: hinton@cs.toronto.edu

signs to a data vector, x, by comparing its global energy, E(x), with the energies of all possible
data vectors, v:

Intuitively, a good unsupervised learning procedure should find hidden factors that assign high
probability to patterns that typically occur. This can be achieved by lowering the energies of
observed data vectors and raising the energies of “negative” data vectors—patterns that should
be observed if the hidden factors constituted a good model of the data. By using the current
model to generate a set of negative data vectors we can convert an unsupervised learning task
into the supervised task of assigning low energies to the observed data vectors and high ener-
gies to the negative data vectors. Notice, however, that the set of negative data vectors depends
on the current model and it will change as the model learns.

The quality of the set of features and constraints discovered by the neural network can be
quantified by the summed log probability that gets assigned to the observed data vectors. The
contribution of a single data vector to this sum is:

The features and constraints can be improved by repeatedly adjusting the weights on the
connections to maximize the log probability of the observed data. To perform gradient ascent
in the log likelihood we would need to compute exact derivatives of the log probabilities:

where wij is the weight on the connection from unit i in one layer to unit j in the next layer.
The first term is easy to compute. We assume that each unit, j, sums the weighted activities

coming from units, i, in the layer below to get its total input, zj = Σi yiwij, where an activity yi in
the layer below is equal to xi if it is the input layer. A smooth nonlinear function of zj is then
used to compute the unit’s activity, yj . The energy contributed by the unit can be any smooth
function of its activity. In this article we use two layers of nonlinear hidden units and the energy
is determined by the activities of units in the second hidden layer:

where yj is the activity of unit j in the second hidden layer and λj is a scale parameter that is also
learned by contrastive backpropagation. This “heavy-tailed” energy contribution is good for
modeling constraints that are usually satisfied fairly precisely and occasionally violated by a
lot. In images of natural scenes, for example, a local, oriented edge filter will have an output of
almost exactly zero almost everywhere. On the few occasions when its output departs from
zero, however, it may be quite large, so the distribution of the violations is very non-Gaussian.

726 G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006)

()

()
() (1)

E

E

e
p

e

�

�
�
�

x

v
v

x

()log () () log (2)Ep E e��� � � v

v

x x

log () () ()
() (3)ij

ij ij ij

p E E
w p

w w w

� � �
� � �� �

� � �
�

v

x x v
v

2() (1) (4)j j
j

E log y� ��x λ

By using the energy contributions in Equation 4 we encourage the network to model the data
distribution by finding constraints of this type (Hinton & Teh, 2001).

After performing a forward pass through the network to compute the activities of all the
units, we do a backward pass as described in Rumelhart et al. (1986). The backward pass uses
the chain rule to compute ∂E(x)/∂wij for every connection weight, and by backpropagating all
the way to the inputs we can also compute ∂E(x)/∂xi for each component, xi, of the input vector.

Unfortunately, the second term in Equation 3 is much harder to deal with. It involves a
weighted average of the derivatives from all conceivable data vectors so it cannot be computed
efficiently except in special cases. We usually expect, however, that this average will be domi-
nated by a very small fraction of the conceivable data vectors, so it seems reasonable to approx-
imate this term by averaging ∂E(x)/∂wij over a relatively small number of samples from the dis-
tribution p(·). One way to generate samples from this distribution is to run a Markov chain that
simulates a physical process with thermal noise. If we think of the dataspace as forming a hori-
zontal plane and we represent the energy of each data vector as height, the neural network de-
fines a potential energy surface with a height and gradient that are easy to compute. We imag-
ine a particle on this surface that tends to move downhill but is also jittered by additional
Gaussian noise. After enough steps, the particle will have lost all information about where it
started and if we use small enough steps, its probability of being at any particular point in the
dataspace will be given by the Boltzmann distribution in Equation 1. This is a painfully slow
way of generating samples and even if the equilibrium distribution is reached, the variance cre-
ated by sampling may mask the true learning signal.

Rather surprisingly, it is unnecessary to allow the simulated physical process to reach the
equilibrium distribution. If we start the process at an observed data vector and just run it for a
few steps, we can generate a “confabulation” that works very well for adjusting the weights
(Hinton, 2002). Intuitively, if the Markov chain starts to diverge from the data in a systematic
way, we already have evidence that the model is imperfect and that it can be improved (in this
local region of the dataspace) by reducing the energy of the initial data vector and raising the
energy of the confabulation. It is theoretically possible that this learning procedure will cause
the model to assign very low energies to unvisited regions of the dataspace that are far from any
data vector. However, the fact that the learning works well on a variety of tasks suggests that
this theoretical problem is insufficient grounds for rejecting the learning procedure, just as the
existence of local minima was insufficient grounds for rejecting backpropagation.

The contrastive backpropagation learning procedure cycles through the observed data vec-
tors adjusting each weight by:

where η is a learning rate and �x is a confabulation produced by starting at x and noisily follow-
ing the gradient of the energy surface for a few steps.1

To illustrate the learning procedure, we applied it to the task of discovering the nonlinear ki-
nematic constraints in a simulated three-dimensional “arm” that has five rigid links and five
ball joints. The first ball joint attaches the arm to the origin, and each data vector consists of the
15 cartesian coordinates of the remaining link endpoints. This apparently 15-dimensional data

G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006) 727

ˆ() ()
(5)ij

ij ij

E E
w

w w

� 	� �
�
� � � ��
�
�
� ��

x xη

really has only 10 degrees of freedom because of the 5 one-dimensional constraints imposed
by the 5 rigid links. These constraints are of the form:

where i and i + 1 index neighboring joints and li,i + 1 is the length of the link between them. Be-
cause the constraints are highly nonlinear, linear dimensionality-reduction methods like prin-
cipal components analysis or factor analysis are of little help.

We used a neural net with 15 input units and two hidden layers. Each of the 15 units in the
first hidden layer computes a weighted sum of the inputs and then squares it. Each of the 5 units
in the top layer computes a weighted sum of the squares provided by the first hidden layer and
adds a learned bias. It is clear that with the right weights and biases, each top-layer unit could
implement one of the constraints represented by Equation 6 by producing an output of exactly
zero if and only if the constraint is satisfied. The question is whether the network can discover
the appropriate weights and biases just by observing the data.

For this example, the units in the first hidden layer do not contribute to the energy and the
units in the second hidden layer each contribute an energy of . This heavy-tailed
energy function penalizes top-level units with nonzero outputs, but changing the output has lit-
tle effect on the penalty if the output is already large.

Fig. 1 shows the weights and top-level biases that were learned by contrastive back-
propagation. For each pair of neighboring joints, there are three units in the first hidden layer
that have learned to compute differences between the coordinates of the two joints. These dif-
ferences are always computed in three orthogonal directions. Each unit in the second hidden
layer has learned a linear combination of the five constraints, but it uses weights of exactly the
same size for the three squared differences in each constraint so that it can exactly cancel the
fixed sum of these three squared differences by using its bias.

The same network can also learn the five constraints when a random 10% of the input vari-
ables are missing from each data vector. The missing input variables are treated as additional
parameters that are initialized at random values and are learned using a version of Equation 5 in
which wij is replaced by xi. The random inputs mean that each instance of a constraint is only
satisfied with a probability of .96 = .53 at the start of learning. However, the heavy-tailed en-
ergy function means that strongly violated constraints only contribute a very small gradient, so
the learning is driven by the accurately satisfied constraints.

We have also applied a similar neural network on the more challenging task of learning fea-
tures that allow us to compactly describe the statistical structure within small patches of digi-
tized images of natural scenes. For this task, we used the same layered architecture, activation
functions, and energy functions as described previously, but this time in a net with 256 units in
the input layer and 400 units in each of the two hidden layers. We also arranged the units within
each hidden layer on a 20 × 20 square grid, and topographically restricted the connectivity so
that each unit in the first hidden layer could only send connections to the unit at the same grid
position in the second hidden layer and to this unit’s 24 nearest neighbors.2

Fig. 2 illustrates some of the features learned in such a model. The first-layer units have
self-organized to form a representation of the image patches in terms of a set of oriented,
band-pass features. These features bear a striking resemblance to the receptive fields of simple

728 G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006)

22 2 2
1 1 1 1() () () 0 (6)i i i i i i i ix x y y z z l� � � � �� � � � � � �

2log(1)j jy�λ

cells found in the primary visual cortex of most mammals and are also similar to the features
learned in other models that seek to capture statistical structure in natural images (Bell &
Sejnowski, 1997; Olshausen & Field, 1996). The second-layer units display similar response
preferences for orientation and spatial frequency, but appear to be somewhat insensitive to the
spatial phase present in the input. As a result of the restricted connectivity between the two hid-
den layers, the features form a topographic map with local continuity in spatial location, orien-
tation, and spatial frequency.

The contrastive backpropagation learning procedure is quite flexible. It puts no constraints
other than smoothness on the activation functions or the functions for converting activations
into energy contributions. For example, the procedure can easily be modified to use recurrent
neural networks that receive time-varying inputs such as video sequences. The energy of a
whole sequence is simply defined to be some function of the time history of the activations of
the hidden units. Backpropagation through time (Werbos, 1990) can then be used to obtain the
derivatives of the energy with respect to the connection weights and also the energy gradients
required for generating a whole confabulated sequence.

G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006) 729

Fig. 1. The areas of the small black and white rectangles represent the magnitudes of the negative and positive
weights learned by the network. Each column in the lower block represents the weights on the connections to a unit
in the first hidden layer from the joint coordinates x1, y1, z1, x2, y2, z2 … x5, y5, z5. For example, the first, second, and
seventh columns show the weights of three hidden units that compute the squared distances between the last two
joints in three orthogonal directions. Each row in the higher block represents the weights on connections from units
in the first hidden layer to a unit in the second hidden layer. For example, the first, second, and seventh units in the
first hidden layer have equal negative weights to the unit represented by the third row in the higher block. The
weights started with very small random values and were learned by 3,300 passes through a training set of 800 ran-
dom arm configurations in which every link was of length 1. The weights were updated after every 100 training
cases. To eliminate unnecessary weights, a decay toward zero of 0.0002 was added to the weight change, ∆wij speci-
fied by Equation 5 before multiplying by the learning rate for that connection, ηij, which started at 0.0001. ηij in-
creased by 1% if ∆wij agreed in sign with its previous value and decreased by 5% if it disagreed. To further speed
learning without causing divergent oscillations, each weight update included 0.9 times the previous weight update.

Notes

1. We used a simplified version of the hybrid Monte Carlo procedure in which the particle
is given a random initial momentum and its deterministic trajectory along the energy
surface is then simulated for a number of time steps (20 for the example in Fig. 1 and 10
for Fig. 2). If this simulation has no numerical errors the increase, ∆E, in the combined
potential and kinetic energy will be zero. If ∆E is positive, the particle is returned to its
initial position with a probability of 1 – exp(–∆E). The step size is slowly adapted so that
only about 10% of the trajectories get rejected. Numerical errors up to second order are
eliminated by using a leapfrog method (Neal, 1996) that uses the potential energy gradi-
ent at time t to compute the velocity increment between time t – ½ and t + ½ and uses the
velocity at time t + ½ to compute the position increment between time t and t + 1.

2. The original data for this model were vectors representing the pixel intensities in 20 ×
20 patches extracted from photographs of natural scenes (van Hateren & van der
Schaaf, 1998). These vectors then underwent standard and biologically motivated pre-
processing (Olshausen & Field, 1996; van Hateren & van der Schaaf, 1998) that in-
volved subtracting the mean value from each pixel and then taking the variance normal-
ized projection onto the leading 256 eigenvectors of the pixel covariance matrix.

730 G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006)

Fig. 2. Each small square depicts the basis function associated with the unit at the corresponding grid position
within the first layer of spatially ordered units. The image within each small square indicates the contribution to the
represented image that each unit would have, were its activity level set to 1. The basis functions are obtained by tak-
ing the pseudo-inverse of the bottom-up weight matrix, and we show these rather than the weights themselves be-
cause they provide greater clarity within a small figure.

Topographic maps can also be learned by using a similar architecture and energy func-
tion, but replacing contrastive backpropagation with a stochastic sampling procedure
(Osindero, Welling, & Hinton, 2006). It is harder, however, to extend the stochastic
sampling approach to work with more hidden layers, whereas this extension is trivial
with contrastive backpropagation. Other methods of learning topographic maps from
natural image patches (Hyvarinen & Hoyer, 2001) are also hard to extend to more hid-
den layers.

Acknowledgments

We would like to thank David MacKay, Radford Neal, Sam Roweis, Zoubin Ghahramani,
Chris Williams, Carl Rasmussen, Brian Sallans, Javier Movellan, and Tim Marks for helpful
discussions and two anonymous referees for improving the article. This research was sup-
ported by the Gatsby Charitable foundation, NSERC, CFI, and CIAR.

References

Bell, A. J., & Sejnowski, T. J. (1997). The “independent components” of natural scenes are edge filters. Vision Re-
search, 37, 3327–3338.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14,
1771–1800.

Hinton, G. E., & Teh, Y. W. (2001). Discovering multiple constraints that are frequently approximately satisfied. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI-2001) (pp. 227–234).
San Francisco: Morgan Kaufmann.

Hyvarinen, A., & Hoyer, P. O. (2001). A two-layer sparse coding model learns simple and complex cell receptive
fields and topography from natural images. Vision Research, 41, 2413–2423.

Neal, R. M. (1996). Bayesian learning for neural networks (Lecture Notes in Statistics No. 118). New York:
Springer.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381, 607–609.

Osindero, S., Welling, M., & Hinton, G. E. (2006). Topographic product models applied to natural scene statistics.
Neural Computation, 18, 381–414.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Na-
ture, 323, 533–536.

van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with
simple cells in primary visual cortex. Proceedings of the Royal Society of London B: Biological Sciences, 265,
359–366.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE, 78,
1550–1560.

G. E. Hinton, S. Osindero, M. Welling, Y. W. Teh/Cognitive Science 30 (2006) 731

