The Cognition of Engineering Design—An Opportunity of Impact

Jonathan Cagan

Department of Mechanical Engineering, Carnegie Mellon University

In May, 2006, the National Science Foundation hosted a workshop entitled “The Scientific Basis of Individual and Team Innovation and Discovery” (Schunn, Paulus, Cagan, & Wood, 2006). An important outcome of the workshop was a focus on the emerging research opportunity of the cognition of engineering innovation. To advance industry’s ability to be innovative, a fundamental understanding of how individuals and teams are innovative must emerge. Such an understanding would enable more effective tools and methods to assist the innovation process, to make it more efficient and productive. Cognitive science offers the possibility of not only acknowledging that creative breakthroughs happen, but how they happen, when they happen, and, from that, how to help them happen. Such understanding will provide the basis for a science of innovation, and that scientific basis will provide the means to improve design innovation outcome.

A rich direction of research is needed. Design is a complex human phenomenon, so research must couple basic theoretical and experimental findings with their application to more realistic design settings, short time frames with longer time frames, and individual mechanisms with group mechanisms. Cognitive science must contribute to the core mechanisms that contribute to these situations.

I believe that to be most impactful, collaborative interdisciplinary partnerships should be pursued. Although cognitive psychologists are in a position to explore the mechanisms of creativity independently, innovation requires the pragmatics of application, of how engineers solve problems and what is important to the engineers in solving those problems; engineers are also driven to place the research in the context of application. I have benefited from a collaborative research approach to understanding the cognition of innovation for more than a dozen years with Kenneth Kotovsky, a cognitive psychology professor at Carnegie Mellon. We have co-advised psychology students and engineering students, working to make inroads in understanding this complex human endeavor.

There are a few key areas that I feel are critical to explore: understanding fixation—what causes it and how to overcome it; understanding representation—how it aids in problem solving and how it changes to improve outcome or overcome fixation; group cognition—how

Correspondence should be addressed to Jonathan Cagan, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213. E-mail: cagan@cmu.edu
the cognitive processes of individuals combine and collaborate for a group level representa-
tion and performance; computational studies—how models of cognition can be emulated on
the computer, how those models can improve design tool performance, and whether explo-
ration of those models can give insight into cognitive mechanisms of innovation; analogical
reasoning—how analogies stimulate novel solutions to difficult engineering design problems;
and expertise—how richer representations and knowledge can accelerate design performance.
To highlight a few:

• Mechanical engineering students gain a deeper representation of mechanical search spaces
through their education. Seniors are better able to reason about functional transformations
and energy flow than freshmen, leading to a deeper understanding of how mechanical
systems work (Moss, Kotovsky, & Cagan, 2006).
• One interesting characteristic of fixation in problem solving is demonstrated by the effect
of open goals on the acquisition of problem relevant information; hints presented implicitly
aid problem solving, particularly in the presence of open goals, but in some situations the
hints are most effective prior to reaching an impasse (Moss, 2006).
• Computational simulations of human performance can emulate exploration versus final path
phases of search. A simulated annealing algorithm that dynamically updated its objective
function imitated findings from cognitive studies of people solving puzzle problems such
as the Chinese Rings Puzzle and Tower of Hanoi (Cagan & Kotovsky, 1997).
• Cognitively motivated computational models of design processes can lead to better model
performance. Agent-based methods are able to synthesize electromechanical devices by
reasoning about their functionality and instantiating their form with each agent motivated
by the same overall goals (Campbell, Cagan, & Kotovsky, 1999). However, synergistic
 collaboration, with agents working together to reach resolution of constraint and goal
conflict, performs far better than each agent making independent design modifications
(Olson & Cagan, 2004). The ability to learn what chunks of a generated design are likely to
transfer to other design problems can accelerate the solution of those new problems (Moss,
• Simulations of highly complex conceptual design tasks reveals that collaborative ap-
proaches to problem solution lead to far better performance than individual, independent
contributions; such collaborative methods include small group work, large group work, and
individual work in balance. Agent-based models of such interactions provide a forum to
design better teams, and improve design tool performance (Olson, Cagan, and Kotovsky,
2006).

Several cognitive psychologists, some in collaboration with engineers, have made other inroads
toward better understanding the fundamental mechanisms of engineering innovation such as
analogue reasoning (e.g., Christensen & Schunn, in press; Linsey, Murphy, Markman, Wood,
& Kortoglu, 2006), fixation (e.g., Jansson & Smith, 1991) and design observation (e.g., Shah,
Smith, Vargas-Hernandez, Gerkens, & Muqi, 2003). Together, this work is just beginning to
lay the foundation for an exciting field of study.

A goal of cognitive science is to seek generalities beyond domains where partici-
pants’ background knowledge influences performance. For engineering innovation, domain
knowledge plays a crucial role in outcome effectiveness and efficiency; still, the principles learned through cognitive research into engineering innovation are generalizable and extendible to other domains such as scientific discovery (Cagan, Kotovsky, & Simon, 2001). A complex, little-explored, broad-reaching field, the study of the cognition of engineering innovation holds promise for new and important findings that will not only advance the field of cognitive psychology, but have the potential for critical impact on the economic advancement and well being of society.

References


