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Abstract

Humans use their spatial information processing abilities flexibly to facilitate problem solving and
decision making in a variety of tasks. This article explores the question of whether a general strategy
can be adapted for performing two different spatial orientation tasks by testing the predictions of a
computational cognitive model. Human performance was measured on an orientation task requiring
participants to identify the location of a target either on a map (find-on-map) or within an egocentric
view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of
the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to
perform both tasks and used to generate performance predictions for a new study. The qualitative fit of
the model to the human data supports the view that participants were able to tailor a general strategy
to the requirements of particular spatial tasks. The quantitative differences between the predictions
of the model and the performance of human participants in the new experiment expose individual
differences in sample populations. The model provides a means of accounting for those differences and
a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that
involve reasoning with maps.
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1. Introduction

Traveling through an unfamiliar environment can be a challenging experience. To facilitate
appropriate decision making, this task is often supported by using a map of the space. Maps
provide a representation of space that is not tied to the viewer’s egocentric perspective (i.e.,
they use exocentric or allocentric reference frames). This provides the advantage of allowing
individuals to gain knowledge about the spatial layout of the space without direct experience
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navigating through it. However, because information about a space is represented differently
on a map than it is from a first-hand, egocentric perspective, there are challenges associated
with using the map-based information effectively to guide decision making and action.

One specific challenge associated with map use relates to the need to account for any
discrepancies in orientation, or misalignment, between the exocentric reference frame of
the map and the egocentric reference frame of our visual experience. Much of the research
conducted on the topic of using maps has addressed this issue (e.g., Gunzelmann & Anderson,
2006; Hintzman, O’Dell, & Arndt, 1981; Levine, 1982; Levine, Marchon, & Hanley, 1984).
Levine, Jankovic, and Palij (1982) described the requirements for this process using the “two-
point theorem.” To establish correspondence between two views of a space requires that two
links between the representations be made. First, a common point must be known to link the
two views. Then, to align the orientations of the two views, a second point or a reference
direction is required.1 Establishing these links allows an individual to translate accurately a
direction specified in one frame of reference into the corresponding direction in the other.

An everyday example of the kind of reasoning required in this situation is determining
which way to go in a mall to find a particular store. Of course, a simple search of the map will
reveal the store’s location, and these maps almost always include a “you-are-here” indicator,
which shows the map’s location in the mall. The indicator can be used as the first reference
point. However, the store’s location cannot be used to aid in establishing correspondence
with the environment because its location in the environment is not known. If you knew that
information, you would not need the map! However, if the map is placed appropriately, it should
be aligned with the space, such that up on the map is forward in the mall when you are facing it
(see Levine et al., 1982). Such placement facilitates identifying relative directions and, if this
relation is also indicated in some way on the map, it provides the additional benefit of serving
as a reference direction that can be used in establishing the appropriate relationship. However,
this is often not the case (Levine, 1982; Levine et al., 1984). When it is not, other strategies
are needed to complete the process of establishing correspondence, like finding a nearby store
or locating a distinctive feature in both reference frames (e.g., an exit or elevator). Once this is
accomplished, it should be possible to determine which way to go to get to the intended store.

Establishing correspondence between two views of a space is the fundamental process
assessed by orientation tasks. Orientation tasks involve making some judgment about a
space, which requires integrating information across multiple reference frames. The particular
task can take a variety of forms, such as locating objects in the environment or on a map
(e.g., Gugerty & Brooks, 2004; Gunzelmann & Anderson, 2006; Gunzelmann, Anderson, &
Douglass, 2004; Hintzman et al., 1981), indicating the relative direction of something in the
environment given an assumed position in the space (e.g., Boer, 1991; Rieser, 1989; Wraga,
Creem, & Proffitt, 2000), or orienteering and navigation tasks (Aginsky, Harris, Rensink, &
Beusmans, 1997; Dogu & Erkip, 2000; Malinowski, 2001; Malinowski & Gillespie, 2001; Mu-
rakoshi & Kawai, 2000; Richardson, Montello, & Hegarty, 1999). Regardless of the particular
task, all orientation tasks require the fundamental step of determining how the representations
correspond. Often there are two spatial views, an egocentric visual scene and an allocentric map
(e.g., Gunzelmann & Anderson, 2006; Malinowski & Gillespie, 2001). In other cases, familiar
environments are used, so individuals are asked to rely on internal cognitive representations
of the space, rather than a map (e.g., Aginsky et al., 1997; Murakoshi & Kawai, 2000).
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Tasks requiring coordination of spatial information from multiple frames of reference arise
whenever there is uncertainty about location within an environment. This can be a frequent
occurrence, especially the first few times that a town, mall, park, or other new area is visited.
Despite the frequency with which individuals are challenged to perform these tasks, they are
still difficult, often requiring significant cognitive effort to solve correctly (e.g., Aginski et
al., 1997; Hintzman et al., 1981; Rieser, 1989). The research presented here examines human
performance on two different orientation tasks to better understand the sources of difficulty
and expand on previous studies.

One factor that has been shown repeatedly to influence the difficulty of orientation tasks
is misalignment (e.g., Gunzelmann et al., 2004; Hintzman et al., 1981; Rieser, 1989). Mis-
alignment is the difference (in degrees) between the orientations of two views of a space. For
instance, traditional maps are oriented with north at the top, but individuals may be facing
in any direction when using the map. If users happen to be facing north, then their view of
the world is aligned with the map. However, the view of the world becomes increasingly
misaligned as the direction being faced deviates more from north. In the worst case, the view
of the world is misaligned by 180◦, which happens when individuals are facing south while
attempting to use a map oriented with north at the top (for a thorough discussion, see Levine
et al., 1982). Resolving this discrepancy is a major source of difficulty in this kind of task.
The impact of misalignment unites not only tasks of spatial orientation (e.g., Hintzman et
al., 1981; Rieser, 1989), but also studies of mental rotation (e.g., Shepard & Hurwitz, 1984;
Shepard & Metzler, 1971) and vision (e.g., Tarr & Pinker, 1989).

Although orientation tasks are a class of problem that share important features, there are
distinct differences among them as well. For instance, to use a map to locate a store in a mall,
you would locate the store on the map, along with your position and other features, and use
that information to find the store in the actual space (find-in-scene). In contrast, the process
goes in the opposite direction if the feature of interest is observed in the environment. In this
case, the challenge is to locate it on a map (perhaps to identify what it is—a find-on-map task).
Of course, other variations in the task result in more dramatic differences in task demands.
Still, even in the two orientation tasks just described, the differences between them mean that
they cannot be solved using an identical strategy. Moreover, it may be that the information
processing demands of the tasks tax the human cognitive system in different ways. This
research explores human performance on these two types of task, building on past research
and evaluating the ability to account for performance on both of them using a general strategy
and a common set of mechanisms.

In Gunzelmann and Anderson (2006), research is described that examines human perfor-
mance on an orientation task where the target was identified in the visual scene and had
to be located on the map (a find-on-map task). The present study extends this work in two
important ways. First, the experiment described below replicates the experimental design for
locating the target on a map from Experiment 2 in Gunzelmann and Anderson (2006), with
one exception. In this experiment a completely within-subjects design was used, which was
not the case in the earlier research (see the Experimental Methodology section). In addition
to this methodological change, this study also extends the earlier research, where participants
completed only a find-on-map task. In the current study, participants also did a corresponding
find-in-scene task, where the target was highlighted on the map and the corresponding item
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had to be identified in the visual scene. The human data collected here is used to test the
predictions of a computational cognitive model, which was developed based on the findings
from Gunzelmann and Anderson (2006). Thus, this research offers a means of both validating
the earlier empirical results, and evaluating the generalizability of the computational account
instantiated in a model to account for human performance in a different orientation task
(find-in-scene).

The remainder of the article begins with an introduction to the experiment paradigm,
followed by a description of the computational model for both tasks. The model was developed
in ACT–R, and is based on a solution strategy reported by nearly all of the participants in
the original empirical study using the find-on-map task (Gunzelmann & Anderson, 2006,
Experiment 2). Following the detailed description of the ACT–R model, the performance
predictions for both tasks are presented. The current empirical study is then described and
the human data are compared to the predictions of the model. The article concludes by

Fig. 1. Sample trials for the tasks used in this research. Note: Panel A shows the find-on-map task, with the target
highlighted (in white) in the visual scene. Panel B shows the find-in-scene task, with the target highlighted (in
white) on the map. In both tasks, the viewer’s position is identified on the map as a circle on the edge with an arrow
pointing to the center. Participants respond by clicking on the object in one view that corresponds to the target that
is highlighted in the other. The correct response is indicated in each image.
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discussing the implications of the modeling work and exploring possible extensions to the
research.

1.1. Task paradigm

The research presented here involves an orientation task where a target is highlighted in
one view of a space, and participants are asked to identify that target in the other view. One of
the views is an egocentric visual scene, whereas the other is an allocentric map. A sample trial
is shown for each version of this task in Fig. 1. In Panel A, the find-on-map task is illustrated,
with the target highlighted in the egocentric view of the space. In Panel B, the find-on-scene
task is shown, with the target highlighted on the map. In these examples, the target is shown
in white, though it was red in the actual experiment. In both tasks, participants were asked
to respond by clicking on the object corresponding to the target in the other view. The trial
shown in Fig. 1a illustrates the task presented to participants in Gunzelmann and Anderson
(2006).

The exact manner in which the stimuli were designed is described below, but there is one
point that is influential with regard to the model. This relates to how objects were positioned
within the space. There were 10 objects in the space in each trial, and they were arranged in
groups (clusters). The space, itself, was divided into four quadrants, which had 1, 2, 3, and 4
objects, respectively. The arrangement of these quadrants relative to each other and relative
to the viewer’s position in the space was counterbalanced. The result is a set of spaces that
did not have any obvious regularities to participants in the current study, none of whom were
able to describe the constraints imposed on how the objects were positioned in the space.
The model described next organizes the space by grouping objects according to the quadrant
divisions. Groups, or clusters, of objects play an important role in the model’s performance,
by providing some context for narrowing the search for the target to a portion of the space in
the other view. Evidence that participants used groups, and that they generally corresponded
to the quadrant structure of the space, is provided below (see also Gunzelmann & Anderson,
2006). Ongoing research is directed at incorporating mechanisms into ACT–R to perform
perceptual grouping (e.g., Best & Gunzelmann, 2005; Gunzelmann & Lyon, 2006).

2. Model overview

The model described in this section is able to complete both the find-on-map task and
the find-in-scene task. The implementation of the model was based upon retrospective verbal
reports of participants in Gunzelmann and Anderson (2006), who reported a common, general
strategy for performing the find-on-map task. In addition, the data from that study were used
to derive values for the parameters identified in this section. The mechanisms in this model
are described in detail for the find-on-map task, based directly on the verbal reports, followed
by a discussion of how the strategy was generalized to perform the find-in-scene task shown
in Fig. 1b. The resulting model was used to produce a priori predictions of performance on
the find-in-scene task, which are presented at the end of this section.
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2.1. ACT–R cognitive architecture

The model was developed in the ACT–R cognitive architecture (Anderson et al., 2004), and
it relies heavily on several fundamental properties of the architecture, such as the distinction
between declarative knowledge and procedural knowledge. The strategy reported by partic-
ipants in the original study was used to generate procedural knowledge to allow the model
to complete the task. Declarative knowledge was incorporated into the model to support the
solution process. For instance, knowledge about what the items on the display represent and
concepts like right and left are represented in the model as declarative chunks. Besides the dis-
tinction between declarative and procedural knowledge, the perceptual and motor components
of ACT–R, which give it the ability to interact with software implementations of tasks, are
critical for generating performance predictions. The model’s performance relies on its ability
to encode information from the screen and to generate responses by making virtual mouse
movements and clicks, with timing mechanisms that are based on existing psychophysical
research. In tasks such as those used here, these aspects of human performance are critical
components of a complete computational account.

2.2. Model for the find-on-map task

The performance of the model is driven primarily at the symbolic level, with the subsymbolic
mechanisms influencing the latencies of events such as mouse movements, attention shifts, and
retrievals of declarative chunks from memory. The model uses the default ACT–R parameter
values for all of these mechanisms, except for retrieval latencies. The time required by the
model to retrieve a chunk from declarative memory was set to .11 sec. However, even this
value was based on previous research (Gunzelmann et al., 2004).

The basic task for the model is to encode the location of the target in enough detail so
that it can be identified from among the objects shown in the other view. The model uses
a hierarchical approach to accomplish this. First, the model identifies a group or cluster of
objects that contains the target. The number of objects in this group and its location relative
to the viewer (left, right, or straight ahead) are encoded, which provide sufficient information
to allow the same cluster to be located on the map. In Fig. 1a, for instance, the target is within
a cluster of three, located on the right side of the visual scene. In Fig. 1b, it is a cluster of four
located straight ahead of the viewer. The second level of encoding is to identify the position
of the target within the particular cluster. The model encodes this position verbally, as the nth
object from one side or the other, and as the nth closest object in the group. The combined
information about the location of the cluster and the position of the object within the cluster
provides sufficient detail to accurately identify the correct object on the map. Note, however,
that if the object is isolated in the space (a cluster of one), then the second level of encoding
can be skipped. In these cases, finding the cluster is equivalent to finding the target.

2.2.1. Locating the correct cluster
Once the location of the target is encoded, the model shifts its attention to the map to identify

the appropriate response. Finding the target on the map involves applying the description of
the target’s location to the perspective shown on the map. The viewer’s location is identified
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on the map, which facilitates this process (see Fig. 1). In fact, this provides all the information
necessary to align the two views of the space because both the viewer’s location and orientation
are identified (see the Introduction section). Consequently, the model starts processing the map
by finding the indicator showing the viewer’s location. To find the cluster, then, the model
searches the map for a cluster that is the correct size, and which is positioned correctly relative
to the viewer.

To perform the search for the cluster efficiently, the model restricts its search to the ap-
propriate region of the map based on the cluster’s location relative to the viewer (to the left,
to the right, or straight ahead). If the cluster is not straight ahead of the viewer in the visual
scene, some spatial updating is required to determine the corresponding portion of the map
when the viewer is not positioned at the bottom of the map (i.e., when the two views are
misaligned). For instance, in Fig. 1a, the “right” side of the visual scene corresponds to the
“left” half of the map. Note that in the trial shown in Fig. 1b, this update is not required.
In that trial, the cluster is positioned straight ahead of the viewer, which corresponds to the
same portion of the map, with or without the spatial updating step. Thus, the model skips the
update in the situation depicted in Fig. 1b. For this experiment, the strategy of finding any
cluster of the correct size in the correct qualitative location is sufficient because each quadrant
contains a different number of objects. This process could be more complex if, say, there were
multiple groups of the same size within the same space. The visuospatial reasoning required
to disambiguate groups in such a situation is not addressed in this model, but it is an area of
emphasis in current research.

The process of updating spatial references takes time in the model, and is controlled by a
fixed cost spatial updating parameter. This parameter was estimated, based on the existing data
from Gunzelmann and Anderson (2006), to be 0.6 sec. In addition to the costs of the update,
when the viewer is located at the top of the map (the views are maximally misaligned, like
Fig. 1a), the model also incurs a penalty for the resulting direct conflict between egocentric
directional reference and the updated references for the map (right and left are reversed, and
thus interfere with default egocentric references). For simplicity, the magnitude of this penalty
is equal to the value of the spatial updating parameter. Note that when the cluster is straight
ahead of the viewer, the model is able to save significant time by skipping this update. Finally,
regardless of whether spatial updating is required, the model starts its search from the position
of the viewer, and moves further away until it finds the appropriate group.

The costs associated with the spatial updating parameter cause the model to require longer
to find solutions to trials when the two reference frames are more misaligned. This factor has
been shown repeatedly to impact response times (RTs) in a variety of particular orientation
tasks (Gunzelmann et al., 2004; Hintzman et al., 1981; Shepard & Hurwitz, 1984). Usually,
the explanation provided for this effect involves a variant of mental rotation—that is, accounts
of performance on this kind of task tend to make the claim that mental rotation is involved
in transforming a representation of the information in one reference frame to match the
orientation in the other reference frame. The updating process in the model does not explicitly
instantiate that view. In part, this is due to architectural limitations of ACT–R, which do not
support complex manipulations of spatial information like mental rotation. Thus, although
participants often reported using verbal descriptions much like the model to describe the
target’s location, it is possible that mental rotation is utilized as a means of updating those
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descriptions to apply appropriately on the map, and mental rotation is sometimes reported
by participants as well (Gunzelmann & Anderson, 2006). With this in mind, the mechanisms
described for updating those references can be seen as a simplification of the mental rotation
processes that participants may be using.

2.2.2. Identifying the target in the cluster
Once the cluster is found, the model is faced with the challenge of identifying the appropriate

item within the cluster. Recall that if there are no nearby distractors (a cluster of one), then
this second step can be skipped. In those cases, the model responds as soon as the “cluster”
is found by virtually moving the mouse and clicking on the object. In other cases, the model
has to use the information encoded about the object’s position to identify it. Once again, this
requires that spatial references be updated based on the viewer’s position on the map. This
time, it is the references that were used to encode the object’s position within the cluster. The
implementation of the model assumes that these references are updated independently of the
updates for the cluster location. Thus, spatial updating is required in this step as well when
the two views are misaligned. The separability of these updates is discussed in more detail in
Gunzelmann and Anderson (2006), where the empirical results were used to tease apart the
updating costs for these two steps.

The process for updating the description of the object’s position within the cluster operates
as follows in the model. When the cluster contains 2 or 3 objects, updating the position
description for the object is identical to the updating process for locating the cluster. In these
cases, it is possible to encode the target’s position using a simple qualitative reference, just
like was possible for describing the cluster’s position. Specifically, the target will be the
leftmost or the rightmost, and also the nearest or farthest, in a group of 2. For a group of
3, the object may also be the one “in the middle” on each axis. Thus, the costs associated
with the updating process in these cases are the same as the updates that were performed
for the cluster, including the cost associated with conflicting references when the views are
maximally misaligned. For a cluster of 4, however, a more sophisticated encoding will often
be required. To reflect the additional complexity associated with transforming a representation
of the location of the target in a cluster of 4, the updating costs for the model were doubled.
Thus, the cost of making transformations becomes 1.2 sec in these cases. In addition, when
the views are maximally misaligned, the cost rises to 1.8 sec, as a result of the penalty incurred
for the directly conflicting references. The increased cost of these operations for clusters of
4 was estimated using the empirical data from Gunzelmann and Anderson (2006). As noted
above, these costs reflect the effort required to update spatial references in the description of
the target’s location when the reference frames of the two views are misaligned. This process
may involve mental rotation, which is not explicitly implemented here. The increased time
required to make this transformation when more objects are in the group is related to findings
that mental rotation is slowed by increased complexity in the stimulus (e.g., Bethell-Fox &
Shepard, 1988).

Spatial updating is costly in the model, but once the process is completed, the model can
apply the updated description of the target’s location and identify the object on the map
that corresponds to the target highlighted in the visual scene. Once the appropriate object is
identified, the model executes a virtual mouse movement and click to make its response. In
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addition to the parameters already noted (retrieval latency and spatial updating), the model
has one additional parameter that was adjusted to match the quantitative results reported by
Gunzelmann and Anderson (2006). This parameter is associated with moving between two-
dimensional (2-D) and three-dimensional (3-D) coordinate systems represented by the map
and the visual scene, respectively. This parameter was set to 0.25 sec to capture the cost of
moving between these reference frames. The fit of this model to the data from Gunzelmann
and Anderson (2006) is presented below. Next, however, the extension of the model to the
find-in-scene task is described.

2.3. Model for find-in-scene task

The method used for generalizing the model described above to perform the find-in-scene
task involved assuming that the same high-level strategy that participants reported for the
find-on-map task would be employed. The implication of this approach is that the same steps
will be executed to arrive at a response for the find-in-scene task, but those steps must be
performed in a different order. This is illustrated in Table 1, which lists the steps involved in
solving either task, with reference to the order of the steps in each. When the strategies are
compared in this way, it obscures the fact that the knowledge state of the model will vary
between the two tasks for any given step because they are performed in a different order.
For example, in the find-on-map task, the allocentric reference frame is identified after the
target’s location has been encoded in egocentric terms. In contrast, this is the very first piece
of information encoded by the model as it begins the solution process for the find-in-scene
task. These differences reflect the variations in how the strategy is employed in the two tasks,
and when relevant pieces of information about the trial are available and needed in each case.

There is an interesting difference in the processes that are required for completing the two
tasks as well. In the find-on-map task, egocentrically encoded information must be converted
to the allocentric coordinate system of the map. In the find-on-scene task, the process required
is the opposite; information encoded relative to the map-based coordinate system must be

Table 1
Steps involved in executing the general strategy for both orientation task variants

Step Number

Viewer Position (Misalignment) Find-on-Map Find-in-Scene

Locate target 1 3
Encode location of cluster 2 4
Encode target location 3 6
Find viewer on map 4 1
Identify allocentric reference frame 5 2
Update cluster location 6 5
Locate cluster 7 8
Update target position 8 7
Locate target 9 9
Respond 10 10
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converted to an egocentric reference frame to allow for appropriate search in the visual scene.
This is the process that is reflected in the spatial updating parameter described above.

Differences in the timing of these processes could have important implications for the
model’s performance. However, in the model predictions presented next, the simplifying as-
sumption is made that those two processes should be symmetric, and that the timing associated
with them should be identical. By making this assumption, the model predicts that perfor-
mance on the two tasks should be quite similar, qualitatively and quantitatively. In the next
section, the model for the find-on-map task is compared directly to the data from Gunzelmann
and Anderson (2006). In conjunction with these fits, the predictions of the model for the
find-in-scene task are presented as a priori predictions about the match in performance across
these two tasks.

2.4. Performance predictions

The data from Gunzelmann and Anderson (2006), in conjunction with the model predictions
for both tasks, are shown in Figs. 2 through 4. Figure 2 illustrates the impact of misalignment
on performance, with RTs increasing as the misalignment between the two views increases.
The impact of misalignment is also apparent in Fig. 3. This effect in the model was discussed
above, and stems from the spatial updating that occurs in cases where the two views are mis-
aligned. Updates are needed whenever this situation exists, and when the views are maximally
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misaligned the model also pays an additional penalty for direct conflict between the spatial
terms.

Figure 2 also shows the influence of nearby distractors on performance in both the human
participants and the model. Recall from the brief description of the task that clusters of objects
were positioned within quadrants in this task. The other objects located in the same quadrant
as the viewer are identified as nearby distractors. Because groups of 1 to 4 were used, the target
was among 0 to 3 nearby distractors on any given trial. As the number of these distractors
increased, so did RTs. The impact of nearby distractors is the result of the additional processing
that is needed as the size of the cluster increases. Simply encoding a larger group takes longer
due to the costs of shifting visual attention. In addition, it is more costly, on average, to encode
the target’s position in a larger cluster, and then to apply that encoding on the other view
because more objects must be considered. This main effect can be seen in Fig. 4 as well.

The interaction between misalignment and nearby distractors, shown in Fig. 2, arises from
the increased cost associated with making spatial updates to resolve misalignment as the
number of nearby distractors increases. With no nearby distractors, the second encoding step
is skipped by the model. For groups of 2 and 3, the target’s position within the cluster must
be encoded, but the costs of updating that information is less than for clusters of 4, where the
target’s position within the cluster is still needed, and the cost of updating that information is
greater.

Figures 3 and 4 illustrate the impact of the target’s location on performance. Because
of the experimental design in Gunzelmann and Anderson (2006), one group of participants
completed trials where the target was off to the side in the near and far positions while another
group of participants did the other trials. This may explain the pattern of data in Figs. 3 and
4, which is not completely captured by the model. By using a completely within-subjects
design in the experiment described below, this effect can be evaluated more systematically. In
contrast, the predictions from the model reflect the manner in which the model searches for
the cluster containing the target object. The model initiates this search close to the viewer and
moves away until the cluster is found. The impact of this is that nearby clusters are found more
quickly, resulting in faster RTs for those trials. In addition, no spatial updating is required
when the cluster is approximately straight ahead of the viewer. Because the updating cost
is avoided in those cases, RTs are faster for those conditions as well. The latter mechanism
produces the interaction between the target’s location and misalignment, shown in Fig. 3.
The first and last points on each line illustrate conditions where the cluster is located straight
ahead of the viewer. In these cases, the impact of misalignment is reduced relative to other
target locations. Last, the model predicts no interaction between the location of the target
and the number of nearby distractors (Fig. 4). The first factor influences the search for the
cluster—that is, the location of the target defines the location of the cluster, regardless of how
many objects are in the cluster. Meanwhile, the number of objects in the cluster influences
the second step of identifying the target within the cluster. The location of the cluster in the
space does not impact the solution process once the cluster has been identified. Because they
impact different steps in the solution process, these two factors do not influence each other
in the model. This prediction in the model is supported by the human data from Gunzelmann
and Anderson (2006), as illustrated in Fig. 4.
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The data shown in Figs. 2 through 4 illustrate that the model is accurate in capturing the
performance of human participants on the find-on-map task. The model predicts all of the major
trends in the data. The strategy implemented is responsible for the qualitative predictions of
the model. The hierarchical approach of locating a cluster followed by identifying the target
position within the cluster leads to the prediction that the size of the cluster should have
an impact on performance. The search strategy utilized for locating the cluster causes the
position of the cluster relative to the viewer in the space to influence RTs. Finally, resolving
misalignment between the two views increases RTs on misaligned trials as a result of the
processes required. Over all of the data, the model is in line with these qualitative trends
(r = .90). The quantitative predictions of the model were fit by manipulating the two spatial
parameters. The retrieval latency (0.11 sec) was based on previous research (Gunzelmann
et al., 2004). These parameters indicate that spatial processes are central to performance on
this task, and also suggest that there are substantial challenges associated with processing the
spatial information presented in the display. With the parameter values identified above, the
model for the find-on-map task captures human performance quite well at the quantitative
level as well (Root Mean Squared Deviation, RMSD = 0.536 sec).

The model for the find-on-map task was generated based upon the verbal reports of par-
ticipants in the Gunzelmann and Anderson (2006) study. In addition, the parameters were
estimated to fit those data. Thus, perhaps it is unsurprising that the model provides a good fit
to the empirical data. However, the model was also extended to perform the find-in-scene task,
which was not performed by human participants in Gunzelmann and Anderson (2006). The
predictions of that model are presented in Figs. 2 through 4 as well. What is most interesting
about the predictions is the degree of correspondence they have to the predictions of the model
for the find-on-map task. This is true not only at a qualitative level (r = .97), but also at a
quantitative level (RMSD = 0.273 sec). These predictions offer an opportunity to evaluate the
general account embodied by the model of human performance on spatial orientation tasks
because the model for the find-in-scene tasks utilizes the same high-level approach to the task
as the model for the find-on-map task. In the next section, an experiment is presented that
provides a test of the model’s predictions, and of the generalizability of the solution strategy
reported by participants in Gunzelmann and Anderson (2006).

3. Experiment

This experiment provides a replication and extension of Experiment 2 in Gunzelmann and
Anderson (2006), including an important procedural modification. Gunzelmann and Anderson
divided participants into two groups, and individuals in each group completed one half of the
set of trials that are possible given the stimulus design. Data were merged across these
groups by pairing participants using an assessment of spatial ability based upon Vandenberg
and Kuse’s (1978) Mental Rotation Test. Although the conclusions based on those meta-
participants were partially validated later in that article, those particular results have not been
replicated using a within-subjects design. Consequently, each participant completed all 768 of
the possible trials in this study to provide such a replication. In addition to this modification
of the earlier methodology, this experiment extends the previous research by having the
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participants complete a find-in-scene task, in addition to the find-on-map task. By modifying
the stimulus materials so that the target was highlighted on the map, rather than in the visual
scene, a direct comparison was made of performance on these two orientation tasks using
otherwise identical stimuli. This also allowed for a direct evaluation of the predictions of the
ACT–R model described above.

Demonstrating that the effects found previously occur in a within-subjects context is an
important step in validating the account developed in Gunzelmann and Anderson (2006) and
the predictions of the model presented above. In addition, direct comparisons between the
two different orientation tasks explored here have not been conducted previously. The model
makes the prediction that performance should be qualitatively and quantitatively very similar
between them, despite differences in the processing demands and the kinds of transformations
that are required. This experiment provided the data needed to evaluate the theoretical claims
embodied by the model.

3.1. Method

3.1.1. Participants
The participants in this study were 16 volunteers solicited from the local community around

the Air Force Research Laboratory in Mesa, AZ, which includes Arizona State University’s
Polytechnic Campus. Participants ranged in age from 18 to 50, with a mean age of 32 years.
There were 6 men and 10 women in the sample. Participants were paid $10 per hour for their
participation, which consisted of two sessions, each lasting approximately 2 hr.

3.1.2. Design and materials
The stimuli used in this study were nearly identical to those used in Gunzelmann and

Anderson (2006). The only difference was in the background landscape that was used for
the egocentric views of the space. This was modified for greater clarity and discriminability
of the objects relative to the background. The size of the space and the positions of objects
were identical. The stimuli were created using the Unreal Tournament (2001) game engine. In
each trial, a space containing 10 objects was shown. On the left was a visual scene, showing
the perspective of a viewer standing on the edge of the space. On the right was a map of the
space, which included an indication of the viewer’s position. All 10 objects were visible in
both views on every trial. Fig. 1a shows a sample trial for the find-on-map task, and Fig. 1b
shows a sample trial for the find-in-scene task. The objects, themselves, were placed into the
space according to quadrants, which contained 1, 2, 3, and 4 objects, respectively. For the
experiment, six unique spaces were created, which represent all of the possible arrangements
of the quadrants relative to each other. Then, by presenting each of these maps in 8 possible 45◦

rotations, all of the possible arrangements of the quadrants, oriented at 45◦ intervals relative
to the viewer, were included. These variations were incorporated to offset any influence that
the particular arrangement of those quadrants might have on performance.

In each trial, the target was highlighted as a red object (it is white in the sample trials shown
in Fig. 1). For the find-on-map task (Fig. 1a), the target was highlighted in the visual scene.
For the find-in-scene task, the target was highlighted on the map. As in Fig. 1, the viewer’s
position was indicated on the map for each trial, regardless of which task was being performed.
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The viewer was located in one of 4 positions at the edge of the map. The viewer was either
at the bottom, one of the sides (left or right), or top of the space. In all cases, the viewer
was facing toward the center of the space (visible as a light-colored dot in both views). This
manipulation produces different degrees of misalignment: 0◦ when the viewer is at the bottom,
90◦ when the viewer was at either side, and 180◦ when the viewer was at the top of the map.
These manipulations to the stimuli result in a large number of potential trials for each task
(768). There are 8 possible locations of the target relative to the viewer2, from zero to three
distractors located in the same quadrant as the target3, four different levels of misalignment,
and 6 different configurations of quadrants relative to each other (6 different maps). All of
these conditions were repeated for both tasks. The only difference in generating trials for the
two tasks was which view contained the highlighted target, with the other view being the one
where participants had to locate the target and make their response. The procedural details are
described next.

3.1.3. Procedure
Participants completed all of the possible trials for both tasks in two sessions. One task

was done in Session 1, and the other task was completed in Session 2. The order of tasks was
counterbalanced across participants to offset learning and other possible order effects. Each
session lasted no more than 2.5 hr (only 2 of 32 sessions lasted more than 2 hr). Participants
began each session by reading a set of instructions for the task, including a sample trial.
Participants were required to respond correctly to the sample trial before beginning the
experiment. In addition to the instructions, the experimenter was available to answer any
questions participants had before they began. Each session was divided into blocks of 20
trials, allowing participants to take a short break between them if desired. In addition, their
progress through the experiment was indicated by providing information about how many
trials they had completed and how many they had gotten correct. Participants made their
responses by clicking on the object in one view that they believed corresponded to the
object highlighted in red in the other view. Feedback was given on each trial regarding
whether the response was correct or incorrect. Their RTs and click locations were recorded
on each trial. Clicks that did not fall on one of the objects in the appropriate view were
ignored.

This experiment also incorporated a drop-out procedure. If a participant made an error on
any of the trials, that trial was repeated later in the experiment until the participant got it correct.
The only constraint on this was that the same trial was never presented twice in a row, unless
it was the last remaining trial in the experiment. The large number of trials made it virtually
impossible for a participant to recognize when a previous trial was being presented again.
This procedure motivated participants to respond both quickly and accurately, as both aspects
of performance influenced overall time to complete the experiment. The same procedure was
followed for both tasks. Once participants finished each task, they were asked to describe the
approach they used to complete the trials. The experimenter asked questions, when necessary,
to clarify these reports. In addition, each participant was asked to step through a couple of
sample trials to illustrate the solution method.
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3.2. Results

A complete discussion of the verbal reports is beyond the scope of this article, but a
general account of them is relevant to the current focus. Recall that the model described
above was based on the verbal reports of participants in the study conducted by Gunzelmann
and Anderson (2006). It is important to note that the verbal reports from participants in this
study are compatible with the model that has been described. Overall, participants reported
strategies that were quite similar to the one that has been instantiated in the model. In fact, every
participant used “patterns,” “groups,” or “clusters” to describe how they organized the space to
find the solution. By matching corresponding groups of objects in the two views, they were able
to bring the two views into correspondence and identify the target. This general technique is
identical to the strategy described by participants in previous experiments, suggesting that the
general approach taken in the modeling work is appropriate for this new group of participants.
It is also interesting to note that all of the participants reported a similar overall approach to
both tasks, which provides initial support for concluding that participants are using the same
general strategy for both tasks.

3.2.1. Errors
Participants were very accurate in performing the tasks, completing over 90% of the trials

correctly across both tasks (93.1%). There was a small difference in accuracy between the task
conditions (94.4% correct for the find-on-map task vs. 91.8% on the find-in-scene task), but
this difference was not significant, t(15) = 0.92, p > .35. Formal analyses are not conducted
on the error data due to the sparseness of the data. Still, the data do reveal interesting patterns.
Table 2 shows the errors rates as a function of misalignment for each of the tasks. In both
tasks, increased misalignment resulted in a higher proportion of errors. For the location of the
target, errors increased as the target was located farther off to one side or the other. This was
true for both tasks (Table 3. Finally, errors increased substantially in both tasks as the number
of nearby distractors increased (Table 4).

Although the errors made in these tasks are not modeled here, they do point to sources
of difficulty, providing important information about how participants were solving the task.
The fact that nearby distractors were an important influence on accuracy indicates that local
features were being used by participants to locate the target. In addition, nearly one half of
the errors made by participants across both tasks (44.3% overall) involved clicking on one of
the other objects in the same quadrant. This is more often than would be expected by chance

Table 2
Errors as a proportion of responses as a function of misalignment

Errors (Proportion)

Viewer Position (Misalignment) Find-on-Map Find-in-Scene

Viewer at bottom (0◦) 0.007 0.019
Viewer at side (90◦) 0.069 0.081
Viewer at top (180◦) 0.076 0.139
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Table 3
Errors as a proportion of responses as a function of the target’s location relative to the viewer

Errors (Proportion)

Target Location Relative to the Viewer Find-on-Map Find-in-Scene

Nearby, directly in front 0.020 0.029
Nearby, off to side 0.052 0.084
Intermediate distance, off to side 0.063 0.104
Far away, off to side 0.065 0.084
Far away, directly in front 0.064 0.080

given the presence of nine non-target objects in the space on each trial, χ2(1, N = 1097
total errors) = 249.57, p < .001. Therefore, it seems that much of the time participants were
able to locate the correct area of the space, but made their error in determining which of the
objects in that cluster or quadrant was the target. This kind of error fits quite nicely with the
implementation of the model described above. The pattern of errors is similar to the RT data
as well (r = .547), which supports the conclusion that the results were not a consequence
of a speed–accuracy trade-off. The RT data for this study are described next, followed by an
evaluation of the model’s performance relative to participants in this study.

3.2.2. RTs
Because error rates were relatively low, the RTs provide a more sensitive measure of the

sources of difficulty for the tasks presented in the experiment. First, it is important to note
that the order in which the tasks were performed did not have a significant effect overall,
F (1, 14) = 0.32, p > .5 (mean square error [MSE] = 1,264.63 sec). In addition, there was no
overall difference in performance between the two tasks, F (1, 14) = 0.39, p > .5 (MSE =
256.95 sec). The interaction between these two factors, however, speaks to the learning that
was occurring as participants worked through the experiment. Participants’ RTs were quite
a bit longer on the task they completed first (average RT was 5.37 sec) versus the task they
completed second (average RT was 4.50 sec). This is reflected in a significant interaction
between the task being performed and the order in which they were performed, F (1, 14) =
18.1, p < .001 (MSE = 256.95 sec).

Table 4
Errors as a proportion of responses as a function of the number of nearby distractors

Errors (Proportion)

Number of Nearby Distractors Find-on-Map Find-in-Scene

Zero 0.014 0.020
One 0.054 0.065
Two 0.083 0.112
Three 0.069 0.124
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For the other effects in the experiment, it is useful to consider whether they may result
from some subset of the maps that were used in the study. Recall that six unique spaces
were generated to include all possible configurations of quadrants relative to each other. It
is possible to test the effects of the other factors in the experiment, using the maps as the
participants in the analyses. In the analyses described below, statistics are presented in this
way (Fm), in addition to the standard statistical results, with the data analyzed over participants
(Fp). If a result is statistically significant over participants, but not over maps, it suggests that
characteristics of a subset of the maps may, in fact, be responsible for the effect, rather than
some general information processing characteristic of the participants. More confidence can
be placed in the robustness of effects that are significant according to both analyses. In addition
to presenting these different statistics, Greenhouse–Geisser corrected p values are used where
applicable.

One of the primary motivations for the experiment was to evaluate the similarity in perfor-
mance between the two orientation tasks presented to participants. As predicted by the model,
performance was similar. As noted above, there was no overall difference in RTs for the two
tasks; this was also supported by the analysis over maps, Fm(1, 5) = 1.50, p > .25 (MSE
= 6.23). Looking more closely at the data, there appears to be a similar effect in both tasks
with regard to the effect of misalignment (Figs. 5 and 6). The impact of nearby distractors is
also similar (Figs. 5 and 7, as is the influence of the target’s location relative to the viewer
on performance (Figs. 6 and 7). In these figures, the data are averaged over left and right for
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Table 5
Summary of statistical results comparing performance between the two tasks

Analysis dfeffect dferror Fa MSE

T × M 3 42 ( 15) 0.34 (1.49) 45.89 (0.64)
T × L 7 98 ( 35) 2.45 (2.54) 15.77 (1.68)
T × D 3 42 ( 15) 2.20 (1.29) 15.47 (0.93)
T × M × L 21 294 (105) 0.65 (0.65) 12.63 (0.71)
T × M × D 9 126 ( 45) 1.24 (1.38) 11.19 (0.70)
T × L × D 21 294 (105) 1.48 (0.95) 11.41 (1.12)
T × M × L × D 63 882 (315) 1.32 (1.19) 9.80 (0.68)

Note. Values in parentheses represent results of the analyses over maps. MSE = mean
square error; T = task; M = misalignment (denoted by the viewer’s position on the map); L
= location of the target relative to the viewer; D = nearby distractors.

aNo effects significant at p < .05.

both misalignment and target location, to increase clarity and readability. The graphs indicate
that each of the factors had similar effects on performance in both tasks. This is reflected in
the statistical findings, which showed that none of the interactions between the task and these
three factors were significant. Moreover, none of the higher level interactions involving task
were significant either. This includes the three-way interactions and the four-way interaction
of the task with all of these factors. Table 5 contains a summary of these statistical results.
These findings show that there is little evidence from this experiment that performance on
these two orientation tasks differs, either at the quantitative level of average RTs (RMSD =
0.567 sec) or in terms of the qualitative impact of the manipulated factors on performance
(r = .931). These findings are in line with the predictions of the model described above.

Because the pattern of results is similar for both of the orientation tasks, the remaining
analyses are reported by averaging the data over the two tasks. In this analysis, it would be
surprising if misalignment failed to have an impact on performance given previous research
in this area. As is shown in Figs. 5 and 6, this factor did impact participants in the expected
direction. RTs increased as the degree of misalignment increased, Fp(3, 42) = 64.61, p <

.001 (MSE = 140.65 sec) and Fm(3, 15) = 240.21, p < .001 (MSE = 2.36 sec). When the
data are averaged over left or right, this effect is strongly linear, Fp(1, 14) = 86.92, p <

.001 (MSE = 29.96 sec) and Fm(1, 5) = 298.59, p < .001 (MSE = 3.23 sec), with little
evidence of a quadratic effect over participants, Fp(1, 14) = 1.49, p > .20 (MSE = 6.19 sec),
but some indication of an effect over maps, Fm(1, 5) = 7.218, p < .05 (MSE = 0.88 sec).
The inconsistent results for the quadratic effect suggest that it may not be reliable. Increasing
numbers of nearby distractors also resulted in longer RTs for participants, as shown in Figs.
5 and 7, Fp(3, 42) = 113.24, p < .001 (MSE = 43.84) and Fm(3, 15) = 21.12, p < .001
(MSE = 14.69). This effect was also marked by a linear trend, Fp(1, 14) = 152.04, p < .001
(MSE = 1,285.02 sec) and Fm(1, 5) = 55.38, p < .001 (MSE = 78.75 sec), but also contained
some evidence of a quadratic component, Fp(1, 14) = 35.04, p < .001 (MSE = 373.32 sec),
although the effect did not reach significance in the analysis over maps, Fm(1, 5) = 4.59, p =
.085 (MSE = 63.59 sec). Finally, the location of the target relative to the viewer impacted
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participants’ RTs, Fp(7, 98) = 22.37, p < .001 (MSE = 30.92 sec) and Fm(7, 35) = 22.77,
p < .001 (MSE = 1.90 sec). This effect can be seen in Figs. 6 and 7.

The main effects provide evidence of how the factors were influencing performance. How-
ever, it is also the case that there were interesting interactions between the factors that mod-
ulated their influence on human performance. These interactions are presented in Figs. 5
through 7 as well. The interaction between misalignment and nearby distractors is evident in
Fig. 5, which illustrates the finding that the impact of misalignment was larger when there
were more nearby distractors. This interaction was significant, Fp(9, 126) = 16.52, p < .001
(MSE = 14.91 sec) and Fm(9, 45) = 14.03, p < .001 (MSE = 1.01 sec). The data in Fig. 6
illustrate the influence of misalignment and the location of the target relative to the viewer
on performance. The analyses indicate that there was a significant interaction between these
factors, Fp(21, 294) = 4.45, p < .01 (MSE = 13.59 sec) and Fm(21, 105) = 6.04, p <

.01 (MSE = 0.63 sec). As in previous research and the model, the impact of misalignment
was reduced when the target was in a cluster positioned approximately straight in front of
the viewer. Finally, the interaction between the target’s location and the number of nearby
distractors is illustrated in Fig. 7. Although the data appear to be fairly regular, the analysis
over participants provided evidence for a significant interaction, Fp(21, 294) = 5.37, p <

.001 (MSE = 12.28 sec). However, the analysis over maps was not significant, Fm(21, 105)
= 2.01, p > .14 (MSE = 2.05 sec), suggesting that the effect observed in the analysis over
participants may be a spurious result. Note that these results are consistent across tasks, even
though Fig. 7 may give the impression of some disparity between the two tasks (see Table 5,
T × L × D interaction). Finally, the three-way interaction of these factors was not significant
in either analysis, Fp(63, 882) = 1.25, p > .25 (MSE = 10.70 sec) and Fm(63, 315) = 1.09,
p > .30 (MSE = 0.76 sec).

The results just described address one of the motivations for the experiment, which was
to replicate the findings from Gunzelmann and Anderson (2006), using a purely within-
subjects design. Success on this goal can be evaluated directly by comparing performance
of participants in the earlier work to the performance of the current participants on the find-
on-map task. The pattern of results was quite similar for this comparison (r = .915). The
most important difference between the two datasets was that participants in this study took
substantially longer to respond, on average, than participants in the previous work (5.00 sec in
this experiment vs. 3.77 sec in Experiment 2 of Gunzelmann & Anderson, 2006). In fact, this
difference in average RT was significant, F (1, 24) = 9.27, p < .01 (MSE = 128.01 sec). This
probably reflects differences in the populations from which the participants were recruited
for the two different studies.4 This is addressed further in the conclusion. Despite the large
quantitative differences, however, the high correlation of the data from the two experiments
indicates that the factors that were manipulated had similar impacts on performance for both
groups. In fact, none of the interactions were significant between these two datasets (p > .10
for all interactions).

3.3. Discussion

The model described above provides a means for understanding human performance on spa-
tial orientation tasks requiring that multiple views of a space be brought into correspondence.
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The original model was developed to perform the find-on-map task, and was then generalized
to perform the find-in-scene task. Despite differences in the procedures required to solve
these two tasks, the model predicted that performance on them should be quite similar. This
prediction was borne out by the experimental results (compare Figs. 2–4 with Figs. 5–7).

The experiment provides a within-subjects validation of previous results. In this study, all of
the participants completed all of the possible trials for both tasks. The data provide encouraging
support for the pattern of results predicted by the model. In addition, the population from which
the participants from this study were selected differs greatly from the population involved in
the original research. The similarity in the pattern of results provides evidence that the factors
shown to influence difficulty are general influences on human spatial performance, which are
not limited to a particular subgroup. In the next section, the model’s performance is compared
in detail to the human data from this study.

4. Model performance

A close comparison of Figs. 2 through 4 against Figs. 5 through 7 produces two conclusions.
First, the pattern of data is similar for the model and for the participants in this experiment.
The qualitative similarity between them is quite good: r = .92. The other obvious conclusion
is that the model is much faster than participants at completing the task. The average RT for
the model was 3.64 sec, whereas it was 4.94 sec for the human participants, across both tasks.
As a result, the quantitative fit is less impressive (RMSD = 1.45 sec). This discrepancy can be
viewed as a consequence of estimating the spatial updating and translation parameters using
the empirical results from Gunzelmann and Anderson (2006). Those participants responded
much more quickly, on average, than participants in this study. Thus, the model’s predictions
fail to match these data at a quantitative level. As mentioned above, it may be that differences
in the populations from which the samples were drawn may be responsible for this overall
difference in performance. Differences in spatial ability, familiarity with the kinds of 3-D
virtual environments portrayed in this experiment, or both may be contributing to those
performance differences. These factors can be seen to relate, respectively, to the spatial
updating parameter and the parameter associated with the transitions between the 2-D and
3-D perspectives, which are influential in determining the model’s RT on any given trial. It
may be that the spatial updating parameter can be associated, to an extent, with familiarity
with the virtual environments used here as well, not just overall spatial ability. For instance,
note that practice with one of these tasks resulted in a large speed-up on the second task,
indicating that practice and experience are important contributors to performance.

If the spatial parameters in the model are allowed to vary to account for differences in
ability or practice between the participants in the two studies, then the model’s performance
can come much closer to the performance of the individuals in the experiment described here.
The performance of the model with revised parameter estimates is shown in Figs. 8 through
10. These data are based on the model using 0.9 sec as the spatial updating parameter and
1.00 sec for the 2-D/3-D transition parameter. These are changed from the values of 0.6 sec
and 0.25 sec, respectively, which were used to account for the data from the earlier work.
Not surprisingly, the correlation between the data from the model and human performance



G. Gunzelmann/Cognitive Science 32 (2008) 857

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Zero (0) One (1) Two (2) Three (3)

Number of Nearby Distractors

R
es

po
ns

e 
T

im
e 

(s
ec

)

Viewer at Bottom (0° Misalignment) - FoM Viewer at Bottom (0° Misalignment) - FiS

Viewer at Side (90° Misalignment) - FoM Viewer at Side (90° Misalignment) - FiS

Viewer at Top (180° Misalignment) - FoM Viewer at Top (180°  Misalignment) - FiS

Fig. 8. Model performance, based on revised parameter values, for both tasks as a function of misalignment and
the number of nearby distractors.
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Fig. 10. Model performance, based on revised parameter values, for both tasks as a function of the number of
nearby distractors and the location of the target relative to the viewer.

remains high (r = .93). In addition, with the revised parameter estimates, the model makes
good quantitative predictions about performance as well. The RMSD between the model data
shown in Figs. 8 through 10 and the human data in Figs. 5 through 7 is 0.55 sec. The average
RT for the model with these new parameter values is 4.88 sec, which is more in line with
the human data in this study. Thus, allowing for different parameter values to reflect the
substantially different overall performance in the two studies, the model provides a very good
account of human performance on these tasks. In fact, the parameters that were varied provide
some clues about the source of individual differences in this task. This topic is addressed in
the conclusion.

5. Conclusion

The research described in this article explores human performance on tasks involving
spatial orientation with maps. The results support past research, using tasks similar to those
presented here (Gunzelmann & Anderson, 2006), as well as studies using a wide array of
variations on the general theme (e.g., Aginsky et al., 1997; Boer, 1991; Dogu & Erkip, 2000;
Gugerty & Brooks, 2004; Gunzelmann & Anderson, 2006; Gunzelmann et al., 2004; Hintzman
et al., 1981; Malinowski, 2001; Malinowski & Gillespie, 2001; Murakoshi & Kawai, 2000;
Richardson et al., 1999; Rieser, 1989; Wraga et al., 2000). The model captures all of the
trends in the data, providing evidence to support the account of performance that it embodies.
Additional support for the model comes from the verbal reports of participants from the
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original study. The strategy that the model uses for the find-on-map task is based upon the
verbal reports from Gunzelmann and Anderson (2006), and the verbal reports for this study
were similar. The strategy for the find-in-scene task is adapted from the original task, with the
principal changes being a reordering of the steps (Table 1), with a corresponding change to the
representations maintained and manipulated in the solution process. This model was applied in
an a priori manner to the experimental paradigm used here, generating the predictions shown
in Figs. 2 through 4. Human participants generated data that matched the trends predicted by
the model, despite the finding that they were significantly slower than the model predicted
(and also slower than the participants in the original study).

The predictions generated by the model represent a case of near transfer in producing a priori
predictions using a computational cognitive model. Despite the differences in the processing
that is required in the two situations, there are significant similarities in the demands for the two
tasks. Still, it is important to note that even near transfer explorations of the generalizability
of computational cognitive models are rarely done. In addition, the extension of the model
was achieved using a principled adaptation of a strategy based on general principles of human
spatial ability. Thus, this general approach can be adapted to provide a means of making
performance predictions on other spatial tasks. This will provide a fruitful avenue for future
research into understanding how spatial abilities are brought to bear in a range of tasks.

Besides illustrating the potential to generalize across tasks, the ACT–R model provides
a foundation for understanding individual differences in performance on spatial tasks. The
empirical results demonstrate that the participants in this study and in Gunzelmann and
Anderson (2006) were affected by the same factors. Thus, despite being faster, the participants
in the earlier study were still impacted by misalignment, nearby distractors, and the location of
the target relative to the viewer. In addition, the pattern of results was quite similar in the two
experiments (r = .915), indicating that the same factors were influencing performance in much
the same way. In the model, the overall difference in performance was captured by varying
parameters associated with performing spatial operations. Note that this explanation supports
the empirical findings by suggesting that the same general strategy was being applied by
both groups. Manipulating the spatial parameters in the model does not impact its qualitative
performance, which is a function of the solution strategy. Not surprisingly, this account
suggests that spatial ability and familiarity with the types of virtual environments portrayed
should be important influences on people’s ability to perform this task rapidly. The particular
values that were used for the spatial parameters in the model appear to reflect a level of
proficiency in these contexts. The point is made clearly in the data from the two studies
because the results are substantially similar other than the discrepancy in overall RTs.

The ability of the model to capture the behavior of a different sample of participants, drawn
from a different population, suggests common predispositions for how to process spatial
information across individuals and across tasks. Central to the account developed here is the
use of hierarchical encoding in the model, a tendency for which there is substantial evidence
in the experimental literature (Hirtle & Jonides, 1985; McNamara, 1986; McNamara, Hardy,
& Hirtle 1989; Stevens & Coupe, 1978). However, the operations that are performed on those
representations, as well as the sources of difficulty that impact performance, also appear to be
similar across individuals and tasks. The model provides an explanation for the similarities, as
well as a way to conceptualize individual differences that were observed. The foundation on
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which the general strategy is based provides a means for understanding human performance
on other spatial tasks. Future research will be directed at extending the general mechanisms
of this model to additional tasks. This process is already underway (see Gunzelmann & Lyon,
2006). Consideration of an increasingly broad range of tasks will contribute to refinement
of the representations and processes in the model, resulting in a more complete account of
human spatial competence.

Notes

1. Note that a second point also provides information about scale by representing the
distance between two points in both reference frames.

2. Target locations will tend toward the center of the quadrant where it resides, such that 45◦

rotations produce eight approximate target locations relative to the viewer (4 quadrant
center points in each of 2 possible alignments of the quadrants –, +, and × )

3. This value was defined by the number of objects in the same quadrant as the target.
Although the random placement of objects into each quadrant meant that the target
could be closer to an object in a neighboring quadrant, this was rare; and the creation of
multiple maps was partially intended to offset such random effects.

4. The participants in the experiment described in Gunzelmann and Anderson (2006) were
recruited from Carnegie Mellon University, a population notable for their generally high
aptitude at spatial tasks and perhaps also for their propensity to play computer games
like Unreal Tournament, which was used to generate the stimuli for this research.
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