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Abstract

People may exhibit two kinds of modifications when demonstrating action for others: modifica-
tions to facilitate bottom-up, or sensory-based processing; and modifications to facilitate top-down, or
knowledge-based processing. The current study examined actors’ production of such modifications in
action demonstrations for audiences that differed in their capacity for intentional reasoning. Actors’
demonstrations of complex actions for a non-anthropomorphic computer system and for people (adult
and toddler) were compared. Evidence was found for greater highlighting of top-down modifications
in the demonstrations for the human audiences versus the computer audience. Conversely, participants
highlighted simple perceptual modifications for the computer audience, producing more punctuated
and wider ranging motions. This study suggests that people consider differences in their audiences
when demonstrating action.
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1. Introduction

When we interact with others, we must not only understand their beliefs, desires, and goals,
but must also tailor our behaviors to accommodate their knowledge and perceptual skills. A
well-known example of this kind of accommodation is “motherese,” which reflects adults’
spontaneous modification of their speech to emphasize segment boundaries, emotional tones,
and references for novice language learners (e.g., Fernald, 1989; Jusczyk, 1997; Morgan
& Demuth, 1996). This kind of audience-contingent accommodation occurs not only for
speech, but for actions as well. For example, when demonstrating simple actions for infants,
adults produce larger actions with more salient and more frequent pauses (Brand, Baldwin, &
Ashburn, 2002; Brand, Shallcross, Sabatos, & Massie, 2007; Rohlfing & Jungmann, 2005).
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These findings are important when considering the full range of potential audiences for
action demonstrations. For example, as machine vision and robotics mature, there will be an
increasing emphasis on the kinds of learning that are also characteristic of early development
in humans. If this kind of learning is to succeed in mechanical representational systems, it will
be necessary to understand how people’s beliefs about these systems affect interactive behavior
produced for the benefit of these systems. The experiments reported here investigated this issue
by asking participants to demonstrate actions for human or computer audiences. Identifying
differences in the demonstrations will not only help to develop a practical understanding of
human-machine interaction, but will also illuminate basic cognitions about fundamentally
different kinds of intelligent systems.

Below, we first review research on how people segment actions, and then discuss research
that demonstrates differences in adult- and infant-directed action and speech. Next, we review
research exploring whether people differentiate between computers and humans during social
interactions. A few studies suggest that people treat computers as intentional agents and apply
a variety of social heuristics to them. These findings suggest that action demonstrations for
computer and human audiences may be similar. However, other studies suggest that people
strongly differentiate between computers and humans, and lead to the prediction that action
demonstrations for the audiences would be different.

2. The complex nature of action

Actions are typically executed with fluid, continuous motion and lack clear pauses to signify
individual parts. To make sense of this complex flow, people must have some way of dividing
actions into units for analysis. How might they succeed? One proposal is that both bottom-
up detection of structural regularities and top-down knowledge of the world play important
roles in driving action segmentation (Baldwin & Baird, 1999, 2001; Newtson, 1973; Newtson
& Engquist, 1976; Saylor & Baldwin, 2004; Zacks, 2004; Zacks & Tversky, 2001; Zacks,
Tversky, & Iyer, 2001). Bottom-up processes rely on salient perceptual features in the motion
stream (e.g., changes in hand trajectory and velocity, changes in head orientation) to mark
boundaries between action units. Top-down processes recruit knowledge about the world,
including actors’ goals and intentions, in identifying boundaries. For example, consider a
person who is washing dishes and grabs a soap bottle. An observer could detect the change in
head orientation just prior to the reach and the movement and slow-down of the hand just prior
to the grasp. Such modifications would serve as a bottom-up indication of the completion of
one part of the action and the start of the next. This type of strategy may be especially important
when observers know little about the events. On the other hand, those familiar with dishwashing
activities may use their knowledge of the goals and intentions underlying the action to identify
units that align with actors’ intentions (e.g., using the soap bottle to clean the dishes).

More important, bottom-up and top-down mechanisms may generate complementary seg-
mentations of action (Baldwin & Baird, 1999, 2001; Zacks, 2004; Zacks et al., 2001). Again
considering the dishwashing example, the completion of the actor’s intention to grasp the
soap bottle aligns with salient changes in physical features of the motion stream, thereby lead-
ing both bottom-up features and top-down consideration of intentions to indicate the same
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boundary points. Top-down mechanisms may lead to segmentation into larger units because
they generate units that align with actors’ goals (e.g., washing dishes). The endpoints of the
larger units will align with the endpoints of at least some of the smaller units of action iden-
tified via bottom-up mechanisms (Zacks, 2004). This suggests a hierarchical structuring of
action, with smaller units “nested within” larger action units (Zacks et al., 2001).

One question is what guides observers’ attention to top-down versus bottom-up features.
Two studies highlight the role of observers’ judgments of the intentional capacity of entities.
Zacks (2004) demonstrated that when observers are shown moving shapes, those who were
told the movements were produced by two people playing a videogame segmented the motions
into larger units than those who were told that the movements were randomly generated. Being
told that the motions were generated by intentional agents may have led to a top-down segmen-
tation that produced larger units. In a similar vein, Killingsworth, Saylor, and Levin (2006)
demonstrated that adults segment action into larger units if they believe the segmentation is
for the benefit of a person or anthropomorphic robot than for a non-anthropomorphic com-
puter. Participants’ judgments of the intentionality of the agents, rather than their judgments
of the agents’ general competence, predicted this tendency. These findings are consistent with
people segmenting action via a top-down analysis strategy for audiences they view as capable
of intentional reasoning.

If segmentation differs according to an audience’s capacity for intentional reasoning,
demonstrations may differ as well. Research that examines infant-directed actions and speech
supports this possibility. In both areas, adults provide modifications that align with infants’
emerging skills to segment action and language into units. Such segmentation may be a build-
ing block of intentional understanding because the process generates the units that will be
subject to an analysis of goals (e.g., Baird & Baldwin, 2001). In the language domain, for
example, adults amplify features of their speech that may help infants to identify boundaries
between speech units (e.g., by increasing pitch range and pausing more frequently; Fernald
& Simon, 1984; Jusczyk et al., 1992). A similar set of modifications may be provided in the
action domain. For example, Brand et al. (2002) revealed that mothers’ demonstrations for
infant versus adult audiences included greater proximity, interactivity, enthusiasm, repetitive-
ness, range of motion, and simplification of actions (see also Brand et al., 2007; Rohlfing
& Jungmann, 2005). One possibility is that adults’ modifications of action similarly work to
assist infants with identifying the individual units.

3. Will people modify their actions for computers?

Although infants may not initially understand the intentions behind actions, they have the
potential to understand these concepts. However, there are recipients of action who may be
unlikely to achieve such an analysis. For example, mechanical agents, such as computers and
robots, are able to engage in action, but may not understand others’ intentions. In addition,
although people sometimes treat computers as social actors (for a review, see Reeves & Nass,
1996), they may apply psychological modes of reasoning less deeply to computers than to
people (e.g., Mishra, 2006), or may apply qualitatively different modes of reasoning about
these systems (Levin et al., 2006).
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Some studies suggest that people treat computers as social actors, although they might
not be aware of doing so. For example, in human—human interactions, when an individual
works with another person to solve a problem, their interdependence leads the individual to
conform his or her opinions to the teammates’. Analogous effects have been demonstrated in
human—computer team situations (Nass, Fogg, & Moon, 1996). In addition, when provided
with computer “personality” cues, such as language suggesting a dominant versus submissive
personality, people prefer to interact with a computer exhibiting a personality more similar to
their own, just as they do when interacting with other people (Nass, Moon, Fogg, Reeves, &
Dryer, 1995). These studies suggest that people may treat computers as social actors. If so,
they may exhibit few differences in how they demonstrate actions for people versus computers.

On the other hand, people sometimes differentiate between computers and humans during
interactions. For example, when solving a problem by sending text messages, people use
fewer words and statements related to interpersonal relationships when their partner is a
computer versus a human (Shechtman & Horowitz, 2003). In addition, people are likely
to take praise or blame offered by a computer at “face-value,” regardless of the difficulty
of the task they attempted (Mishra, 2006). In contrast, when receiving feedback from
human evaluators, people consider the intentions behind the praise or blame. They view
their performance as worse when they receive praise for an easy task and no blame for a
difficult task than when they receive no praise for an easy task and blame for a difficult task
(Meyer, Mittag, & Engler, 1986). These studies suggest that people do not always align their
interpretation of computer and human behavior.

Prior research supports this possibility. For example, describing a computer system in
non-anthropomorphic terms influences how people reason about it (see Levin & Beck, 2004;
Levin et al., 2006). Furthermore, the research on action segmentation reviewed earlier sug-
gests that people will give less weight to an actor’s intentions when segmenting for a non-
anthropomorphically described computer than a person (Killingsworth et al., 2006). Together,
this research suggests that non-anthropomorphically described computer systems may not be
viewed as capable of intentional reasoning. This difference may lead people to treat com-
puters and people differently during action demonstrations. One way that they may do so is
by selectively highlighting portions of the action sequence that they think the computer is
capable of producing. For example, they may work to make their motions more salient by
providing structural or configural cues that will function to highlight unit boundaries that are
not necessarily related to intentions. At the same time, they may be relatively unlikely to
provide discrete social behaviors (like pointing or looking at their audience) that may function
to draw the attention of the audience to their goals.

A pilot study provided support for this prediction (for a fuller report, see Herberg, Saylor,
Levin, Ratanaswasd, & Wilkes, 2006). In this study, participants revealed a few differences
in their demonstrations for a computer and a person. In particular, they provided more looks
for a person than a computer and more punctuated actions for a computer than a person. This
initial study provided some promising support for our hypothesis that actors would highlight
their goals by providing social modifications for intentional audiences, and would highlight
their motions for a nonintentional audience. However, the effects were relatively weak (only 2
out of 10 modifications showed differences between audiences), and there were several issues
with the methodology. For one, participants may have been working so hard to perform the



J. S. Herberg et al./Cognitive Science 32 (2008) 1007

actions that they had few resources to devote to thinking about how to tailor their actions for
audiences. In the current study, we addressed this by having participants demonstrate simpler
actions. In addition, to help participants make the comparison between the two audiences,
trials were blocked so that they demonstrated one action for each audience before moving
on to demonstrate the next action. This design leads to some interpretative issues, which we
return to in the general discussion. Next, we measured participants’ motion modifications
more precisely by recording their hand motions during the demonstrations and extracting
kinematic motion variables from the recorded data.

One important interpretive issue with the pilot study was that the differences between
audience demonstrations may have occurred because participants attributed greater knowledge
of the actions to the human audience than the computer. To control for this possibility in the
current experiment, one of our human audiences was described as an Amazonian tribe member
lacking knowledge of Western culture. In addition, a toddler audience was included. Not only
would this audience lack knowledge about the actions, but in addition, a toddler is the kind
of intention-interpreting novice that might invoke motherese-like modifications to action. If
the lack of social action highlighting for the computer audience in the pilot study occurred
because of beliefs about computers’ competence, then one might expect similarly low levels
of highlighting for the relatively incapable toddler. Previous research testing audience effects
on demonstrations of action has typically used infants, rather than toddlers (Brand et al., 2002;
Brand et al., 2007; Rohlfing & Jungmann, 2005). However, we chose a toddler audience to
make our cover story about teaching the actions more plausible, and to reduce the impact of
participants’ attribution of limiting motor capabilities on the audience’s ability to track the
actions.

4. This study

This study compared action demonstrations for a computer and two human audiences.
People demonstrated three tasks: sorting cards, tying a shoe, and the Tower of Hanoi puzzle.
We selected tasks that would be easy to learn through quick practice, but that would involve
multiple steps to allow for ample variation in how the actions were performed. The tasks also
varied on how constrained they were, with the card-sorting task being the least constrained
and the Tower of Hanoi puzzle being the most constrained. Instead of using actual people
and computers, we chose to have participants demonstrate as if a person or computer was
present. To help participants do so, we provided them with a picture of each audience. The basic
rationale for this was to avoid differential audience behaviors as a potential cause of differences
in participants’ demonstrations. With pictures, we could be sure that any differences would be
due solely to participants’ conceptions of how to interact with each audience. In additional,
prior research has used pictures or representations of computer and human audiences to
investigate social interactions with the different audiences (e.g., see Levin & Beck, 2004;
Reeves & Nass, 1996; Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003). In any event,
the most intuitive consequence of substituting a picture for a real audience is to weaken the
manipulation. If, despite using pictures, we find differences in demonstrations for the different
audiences, we can assume a robust effect.
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Videos of the demonstrations were coded for social modifications. Motion modifications
in the demonstrations were also measured. Looks to the picture of the audiences, points,
smiles, repetitions, and purposely incorrect actions were counted as social modifications. We
chose this group of social modifications with the idea that they may assist with a top-down
analysis of action by helping to highlight actors’ intentions and goals. To our knowledge,
there is no existing previous literature on the types of modifications that accompany intention-
relevant units in natural action. However, although there may be a few exceptions, these
social modifications may function to highlight the goals and intentions of an actor by drawing
the audience’s attention to portions of the motion stream that are relevant for an intentional
analysis. Using each social modification correctly requires some recognition that one’s social
partner is an intentional agent. In each case, the social modifications are discrete behaviors,
but they are not a part of the action sequence that should be copied by the audience. In
essence, each of the modifications provides information about the meaning of the action
sequence, independently of the physical action performed. For example, a repetition does not
mean, “do this twice,” but instead means, “this step is important, please watch carefully.”
A purposely incorrect action is a way to highlight what not to do. A smile may signal the
completion of an action, but is not part of the sequence itself. Looks and points ensure that
your partner is attending to your actions, and may be more likely to be provided for audiences
that are capable of grasping the link between people and objects. If the actors recognize the
function of these actions, they should be more likely to produce social modifications for the
audiences that are capable of reading past the physical behavior to interpret the underlying
intention.

The following motion measurements were analyzed via a handtracker: velocity, pace, path
efficiency, path length, and pause abruptness. Velocity corresponded to how fast the hand
moved. Pace corresponded to how continuous and uninterrupted the motion was. Low pace
involved breaking up motions with long pauses and, therefore, makes the motions easier
to process. Another measure was path efficiency. This measure quantified how direct and
small the motions were. If the hand took short, direct paths from point to point, then path
efficiency would be high. If, however, the paths taken by the hand were large and curved,
then path efficiency would be low. This corresponds to a high range of motion and may
facilitate segmentation. The path length measure corresponded to the distance covered by
the hand for each motion. Higher path length involved a larger range of motion, which may
facilitate an audience’s processing of the motions. Finally, pause abruptness corresponded
to how quickly the hand slowed down prior to each pause. Motions punctuated with sudden
hand pauses would correspond to high values on this measure, whereas smoother pausing
would correspond to low values. Making pauses more abrupt may highlight the bound-
aries between different motions. To recap, low values on velocity, pace, and path efficiency
and high values on path length and pause abruptness may facilitate detection of segment
boundaries.

We have two sets of predictions, one for the computer versus human (adult and tod-
dler) demonstrations, and one for the toddler versus adult demonstrations. Regarding the
first set, if people fail to represent a computer as capable of intentional reasoning, they
should use fewer social modifications and more motion modifications for the computer
relative to the humans. For the second set, if people view the toddler as still developing
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their action analysis skills (which include both a perceptual and intentional component),
they should include more social and motion modifications for the toddler than for the adult
audience.

4.1. Method

4.1.1. Participants

Participants were 36 adults who volunteered through a university Web site (mean age =
28 years, SD = 10.9 years; range = 19-59 years; 19 women). The data from 1 additional
participant was omitted because she did not remain sitting while demonstrating the tasks.

4.1.2. Design

The design was within-subjects with three audiences (adult, toddler, and computer) and
three tasks (Tower of Hanoi, card sorting, and shoe tying). Participants demonstrated one
task for all three audiences before moving on to the next task. The order of audiences was
counterbalanced so that each participant received each audience in each order across tasks. For
example, a participant might first demonstrate the Tower of Hanoi to the computer, toddler, and
adult; then demonstrate the card-sorting task to the toddler, adult, and computer; then finally
the shoe-tying task to the adult, computer, and toddler. The task order was counterbalanced
across participants.

4.1.3. Materials

Pictures representing each audience were used. For the adult condition, participants saw
a picture of an adult member of the Yanomami tribe. For the toddler audience, participants
saw a picture of a 3-year-old toddler. For the computer condition, a picture of a computer and
monitor with a mounted camera was used.

The materials used for each of the three actions were as follows: nine cards (each 6 in. x 3
in.) made of colorful posterboard (3 pink, 3 green, and 3 blue) for the card-sorting task, three
plastic tubes and three plastic rings (1 small red ring, 1 medium-sized yellow ring, and 1 large
blue ring) for the Tower of Hanoi task, and a male dress shoe for the shoe-tying task.

A digital video camera was used to videotape participants’ action demonstrations for later
coding. Participants’ hand motion was tracked using a pciBIRD DC Magnetic tracker with mid-
range transmitter by Ascension Technology Corporation. The handtracker’s two unobtrusive
sensors were attached to wristbands. This system was set up to record the three-dimensional
(xyz) coordinate positions of participants’ hands throughout each action demonstration at a
rate of approximately 30 measurements per second.

4.2. Procedure

Participants were seated at a table and were told that the experiment would involve demon-
strating three simple actions for different kinds of people and things. Participants were asked
not to use language when demonstrating actions because our focus was on modifications to
action. After the consent procedures, participants were asked to put on the hand sensors. They
were asked to begin and end each action with their hands on two small marks on the table.
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This was to ensure a consistent starting point and endpoint in the handtracker data for each
action, and to reduce extraneous movements unrelated to the target actions. After setting up
the materials for a given action, the experimenter left the room to avoid influencing the ac-
tion demonstrations. When participants finished a demonstration, they were instructed to say,
“done.” At that point, the experimenter re-entered the room and set up the materials for the
next demonstration. The experiment was divided into three phases: practice session, audience
descriptions, and test trials.

4.2.1. Practice session

During the practice session, the experimenter set up the materials for each action and gave
instructions for completing the action. Actions were introduced one at a time, and participants
were asked to practice each action until they felt comfortable enough to demonstrate it clearly.
The three actions were the card-sorting task, Tower of Hanoi task, and shoe-tying task.

The card-sorting task began with nine cards arranged into three rows. The rows were
arranged so that each row contained three different colored cards (i.e., a pink, green, and
blue card). Participants were asked to rearrange the cards by sliding them so that each row
contained three cards of the same color.

The Tower of Hanoi task began with three plastic tubes placed side-by-side. Three rings
of different sizes were placed on the left-most tube. Participants were instructed to use their
dominant hand for this task. Participants were told that this task was a small puzzle in which
the goal was to get the rings over to the right-most tube. In doing so, they were instructed to
move one ring at a time and that a larger ring could never be placed on top of a smaller ring.
To simplify the task, participants were explicitly shown the most efficient solution, with the
task being to demonstrate that solution.

In the shoe-tying task, participants were presented with an untied shoe, and the task was to
simply tie the shoe without lifting it.

4.2.2. Audience descriptions

After completing the practice session, participants were told about the computer and human
(adult and toddler) audiences. The computer system was described as being able to process
visual information to carry out a demonstrated action. The adult audience was described as
an Amazonian tribe member, and the toddler was described as a 3-year-old. Both human
audiences were described as being able to learn how to carry out actions via observation.
See Table 1 for the audience descriptions provided to participants. Participants were asked to
demonstrate each action so that their audience would be able to carry out the same action.

4.2.3. Test trials

After the audiences were described, participants were asked to demonstrate each action for
each audience. For each trial, the experimenter placed a picture of the audience on a stand to
the left of the table, so that the participant could see the picture. Participants were reminded to
demonstrate the action for the audience and were instructed to “pretend that the picture is the
person or thing you are demonstrating to.” The experimental session consisted of nine trials:
participants demonstrated one action to each audience before moving on to the next action.
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4.3. Coding

4.3.1. Social modifications

Five social modifications (looks, points, smiles, repetitions, and purposely incorrect actions)
were coded from videotapes. Each social modification highlighted the demonstrator’s goals
and intentions in some way. Social modifications were coded by counting how often the
participant produced a target behavior. Looks corresponded to the number of times participants
glanced at the picture of the audience during the demonstration (the picture was off-camera,
maintaining the coder’s naivety to condition). Pointing to an individual object, a collection of
objects, or a location on the table each counted as a single point. Index finger points and points
produced with an open hand were both included. The smiles modification was a measure
of the number of times the participant smiled while demonstrating the action. Repetitions
corresponded to the number of times participants repeated an action. Finally, the number
of purposely incorrect actions was counted. These actions were usually accompanied by a
shake of the head. On occasion, a participant did not produce an incorrect action but instead
indicated it by pointing. For example, if a ring in a given step in the Tower of Hanoi task was
not supposed to be placed on the middle tube, a participant might point to the ring and then
to the tube, and then produce a head shake, rather than actually move the ring onto the tube
before the head shake. When this occurred, it was counted as a purposely incorrect action
rather than a point.

The first author coded the social modifications while naive to condition. A second coder,
naive to condition and the experimental predictions, also coded the demonstrations on the
social modifications for reliability purposes. Both coders tended to have similar counts of
each social modification, with the mean difference in detection of the behaviors being 1.63
looks, 1.98 points, 1 smile, and > 1 repetition and purposefully incorrect action. Cronbach’s
alpha ranged from .87 to .97 for the five social modifications.

4.3.2. Motion modifications

Five kinematic measures were computed from participants’ handtracker data. The variables
were velocity, pace, path efficiency, path length, and pause abruptness. The handtracker
measures depended on dividing the action of the hand into motions and pauses. The pause
threshold was approximately 2 in. per second; if the hand velocity fell below this threshold,
the hand was considered paused.! Motions were defined as occurring between pauses. All
handtracker variables were computed on the first 10 sec of each demonstration (with an average
total demonstration length of 43.27 sec). This was to remove the noise social modifications
contributed to participants’ raw motion patterns. For example, if a point were included in
our measurement of motion modifications, the measurements would artificially change on
account of that social modification, rather than a pure modification to the motions. The
handtracker variables were computed on whichever hand was moving during the first 10
sec of the demonstration; if both hands were moving, then the variables were computed
for the participant’s dominant hand. We determined which hand was dominant by asking
participants which hand they typically write with. If at the 10-sec cutoff point the hand was
in the process of making a motion, this motion was factored into computing the handtracker
variables if the motion was at least halfway complete. Otherwise, the last motion was left out
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Table 1

Audience descriptions

Audience Description

Adult “Popol is an adult human from the Yanomami tribe near Brazil, and is

unfamiliar with Western culture. Your task will be to train Popol in each
action. Popol can be trained by watching what you do.”

Computer “RWPM is a computer program which takes in visual information through its
input device and can carry out actions with a mechanical gripping system, a
kind of robotic arm which hangs from the ceiling. Your task will be to train
RWPM in each action. RWPM can be trained by taking in the visual
information from what you do.”

Toddler “Mikey is a three year old toddler. Your task will be to train Mikey in each
action. Mikey can be trained by watching what you do.”

of the computations. If there was a gestural social modification (point, repetition, or purposely
incorrect action) in the first 10 sec of a participant’s demonstration, that demonstration was
excluded from the handtracker analysis. In choosing 10 sec as the cutoff point, we balanced
the desire to take the measurements for as much of each included demonstration as possible
against the desire to exclude as few demonstrations from the handtracker analysis as possible.
By taking the measurements on the first 10 sec of each demonstration, we were able to retain
75% of the demonstrations for analysis.

Velocity was computed by measuring how fast the hand moved on average for each motion.
Pace was computed as the ratio of the duration the hand was in motion to the duration the
hand was paused. Path efficiency was computed by taking the ratio of the hand’s displacement
to path length for each motion and averaging across motions. Path length was computed as
the average distance the hand moved during each motion. Pause abruptness was computed
by measuring the hand’s average deceleration during the approximately 0.21 sec prior to a
pause.>’The magnitude of this deceleration corresponds to how abrupt the pause is.

4.4. Results

In the following, we begin with analyses that address our predictions regarding differences
between computer and human audiences. In doing so, we have collapsed across the adult and
toddler data. Following this analysis, we report on demonstration differences between the
adult and the toddler. Social modifications were analyzed as the number of modifications per
second to control for differences in the demonstration lengths across the audiences (toddler,
M = 52.45 sec; adult, M = 47.03 sec; computer, M = 41.64 sec).

4.5. Computer—human demonstration differences

4.5.1. Social modifications

A repeated-measures multivariate analysis of variance (MANOVA) with audience (human
vs. computer) as the within-subjects factor indicated the human demonstrations contained
a higher rate of social modifications than the computer demonstrations,F (5, 31) = 10.77,
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Fig. 1. Mean rate of production of each social modification (4 standard error) for the computer versus human
audiences.

p < .001. This effect was present for both the toddler and the adult audience (although the
repetition effect was only marginal for the computer vs. the adult; see Fig. 1

4.5.2. Motion modifications

A repeated-measures MANOVA with audience (human vs. computer) as the within-subjects
factor was conducted to investigate whether there was more motion highlighting for the
computer than for the human audiences. Recall that low values on velocity, pace, and path
efficiency and high values on path length and pause abruptness signal more highlighting
of segment boundaries. The analysis indicated a marginal effect on motion modification
production, F (5, 29) = 2.38, p = .06. Univariate contrasts indicated that the effects were
significant and in the predicted direction for path length, F (1, 33) =4.79, p = .04; and pause
abruptness, F(1, 33) = 5.27, p = .03. Contrary to our predictions, the computer audience
elicited actions with higher velocity than the human audiences, F(1, 33) = 11.81, p = .002.
Post-hoc comparisons revealed that the human—computer difference was present for both
human audiences but that the path length effect was only present for the adult audience, F(1,
33) =6.99, p = .01; and the pause abruptness effect was only present for the toddler audience,
F(1, 33) = 10.08, p = .003. Because we did not have predictions regarding differences
between the computer and the two human audiences, we will not attempt to interpret these
differences further (see Fig. 2).

4.6. Toddler—adult demonstration differences

4.6.1. Social modifications
A repeated-measures MANOVA with audience (toddler vs. adult) as the within-subjects
factor indicated a marginally higher rate of social modifications for the toddler than for the
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Fig. 2. Mean magnitude (normalized score) for each motion modification (4 standard error) for the computer
versus human audiences.

adult audience, F(5, 31) = 2.22, p = .08. Univariate contrasts revealed that this was the
result of a higher rate for smiles, F (1, 35) = 8.63, p < .001; and a marginally higher rate for
repetitions, F(1, 35) = 2.49, p = .12 (see Fig. 3).

4.6.2. Motion modifications

A repeated-measures MANOVA with audience (toddler vs. adult) as the within-subjects
factor indicated more motion modification for the toddler than for the adult, F (5, 29) =
2.69, p = .04. The toddler demonstrations were lower than the adult demonstrations in pause
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Fig. 3. Mean rate of production of each social modification (4- standard error) for the toddler versus adult audience.
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Fig. 4. Mean magnitude (normalized score) for each motion modification (4- standard error) for the toddler versus
adult audience.

abruptness, F(1, 33) = 6.16, p = .02. This was the opposite of what we predicted initially.
In addition, the toddler demonstrations tended to be lower than the adult demonstrations in
path efficiency, although this difference did not reach statistical significance, F(1, 33) = 2.54,
p = .12 (see Fig. 4).

5. General discussion

This study tested whether adults modify their action demonstrations for audiences that vary
in their capacity for intentional analysis. In line with our predictions, people adjusted their
demonstrations to a mechanical audience to include fewer social modifications than what they
included for human audiences. In addition, the two human audiences elicited different rates of
social modifications, with a toddler receiving more smiles and (marginally) more repetitions
than an adult. We also found support for our claim that demonstrators would vary how much
they highlighted their motions for mechanical versus human audiences. Their actions were
faster, wider, and more punctuated for the machine than the human audiences. We also found
limited support for our claim that there would be differences in the motions for toddler and
adult audiences. Motions for the toddler were (marginally) wider and less punctuated than
those for an adult.

These findings suggest that adults may consider their audiences’ capacity for intentional
reasoning when demonstrating actions. A computer audience elicits few discrete behaviors,
such as smiles and points, that will draw attention to their underlying motivations, but seems
to pull for more salient motions. This may be because participants view the computer as
incapable of reasoning about goals (e.g., Killingsworth et al., 2006; Levin et al., 2006). In
contrast, when faced with an audience who has an emerging ability to understand goals, they
provided discrete social modifications and limited motion highlighting. This may be because
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they believe that toddlers require scaffolding of goals via the production of both kinds of
mutually supportive modifications.

Two of our motion modifications showed a pattern that was the opposite of what we
predicted. Motions were faster for the computer than for the human audiences, and were less
punctuated for the toddler than for the adult audience. We discuss possible reasons for these
differences below.

Instead of facilitating bottom-up processing of an action for a computer by slowing down
their motions, participants increased their speed relative to the human audiences. One pos-
sibility is that this was due to the range of motion increase for the computer. A related
possibility is that participants may have partially mimicked a mechanical style of movement
when demonstrating for a computer. On this view, certain facets of their demonstrations
changed to reflect the style of movements the audience itself would produce in executing
the action. In the current study, this would have translated into faster and larger motions for
the computer audience. Action sequences may be analogous to a basic-level concept, with
the different movement styles for achieving the action as subordinate-level concepts (Pollick,
Lestou, Ryu, & Cho, 2002; Pollick & Paterson, 2008). The participants may have believed a
computer system would produce faster motions than humans. An interesting avenue for future
research will be to investigate how beliefs about the canonical motion patterns of an audience
influence people’s demonstration style.

Contrary to our predictions, there was less punctuation for the toddler than adult audience.
This was coupled with a marginal tendency to provide long, curved motion paths for the
toddler relative to the adult (our path efficiency measure). One possibility is that the less
punctuated actions to toddlers were linked to demonstrators’ tendency to provide larger, more
curved motions for toddlers relative to adults. Path efficiency was our attempt to incorporate
the smoothness rating used by Rohlfing and Jungmann (2005). Our measure was the reciprocal
of theirs. Their smoothness measure indicated smaller motions in infant-directed than adult-
directed action. Our findings were the opposite of this, with motions for our toddler audience
being larger than motions for our adult audience. One possible explanation is that Rohlfing and
Jungmann may have included social modifications in their handtracker analysis (it is unclear
from their report whether they did so). Participants may have made many social modifications
for infants and few for adults, which may have led to smaller motions for the infants in
Rohlfing and Jungmann’s study.

In interpreting our findings, it is important to consider our within-subjects design. In having
participants demonstrate a given action to each audience in succession, our goal was to increase
the likelihood that participants would engage in the process of structure mapping so that they
would explicitly take note of the differences as well as similarities in their representations of
computer and human audiences (Gentner & Medina, 1998). Although this may push them to
consider differences between the audiences that they may otherwise fail to consider, it may
also create artificial demonstration differences based on demand characteristics. One question
is whether intrinsic representations of audiences may lead to more automatic demonstration
differences. However, previous research suggests that without the direct juxtaposition provided
by our blocked design, participants fail to reveal robust differences in their demonstrations
(Herberg et al., 2006). In future studies, a more direct comparison between instructions to
demonstrators could be made.
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Our findings support the idea that adults tailor their actions to different audiences. Comput-
ers, adults, and toddlers differ on several specific dimensions including intentional reasoning,
knowledge base, and perceptual capacities. Although our interpretation is that demonstrations
varied based on the audiences’ intentional capacities, we cannot be sure at this point that this
is the only factor in play. However, our results suggest that differences in demonstrations were
not the result of judgments of how knowledgeable the audiences were. For example, people
produced faster motions when demonstrating for our computer system. This suggests that
the paucity of social modifications provided to the computer does not reflect the assumption
that computers are generally less capable of processing actions. Rather, the need to interpret
intentions to understand such modifications may be the central factor. In addition, recall that
the adult audience was described as a member of an Amazonian tribe unfamiliar with West-
ern culture. Even so, participants included more of several social gestures for this audience
than the computer. This finding provides suggestive evidence that judgments of an audience’s
capacity for intentional reasoning may be a central influence on action demonstrations. This
possibility is supported by several recent studies that have investigated adults’ analysis of ac-
tions for computer and robot audiences (Killingsworth et al., 2006) and their inferences about
the types of categorical judgments that characterize thinking in mechanical agents (Levin,
Saylor, Killingsworth, Gordon, & Kawamura, 2007). In both studies, participants’ ratings for
low intentionality aligned with more mechanical interpretations of the behavior of computers
and robots. Together with the present research, these findings suggest that adults think about
the intentional capacity of others during their interactions.

This research speaks to the hypothesis that people treat computers as social actors (e.g.,
Nass et al. 1996; Nass & Moon, 2000; Nass et al.,1995). Under a strong version of the hypothe-
sis, people should demonstrate actions for the computer audience in the same ways they do for
human audiences. Nass and Moon argued that people automatically treat computers as social
actors: that they may know that computers are not intentional systems, but when interacting
with computers, they mindlessly activate the same social scripts activated in human—human in-
teractions. In contrast, we found evidence for faster and larger motions for a computer audience
than for human audiences. In addition, our participants provided very few social modifications
for the computer audience. These two pieces of evidence do not support the strong version of
the social actors hypothesis (see also, Mishra, 2006; Shechtman & Horowitz, 2003).

One reason for this discrepancy may be that human—human scripts are only activated when
features of the human—computer interaction suggest the appropriateness of such scripts. For
example, in Nass et al. (1995), people may have responded to computer personalities in the
same way as human personalities because of the language produced by the computer. Similarly,
in Nass et al. (1996), people had to cooperate and communicate with a computer. The nature of
this interaction may have led people to activate their human—human social scripts. In addition
to linguistic and interactive cues, voice output (Nass, Moon, & Green, 1997) and an image of a
face (Nass, Isbister, & Lee, 2000) may activate a social action heuristic. In our experiment, there
were no features in the interaction that suggested that the computer was a social agent. Having
a computer in the room that responded contingently to the actor’s behaviors may have led to a
pattern of findings that would have been consistent with the social actors hypothesis. However,
the fact that differences between the computer and human audiences were obtained even with
our sparse stimuli may reflect the robustness of adult’s concepts of computers and humans.
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An additional possibility is that our finding of more social modifications for human than
computer audiences may have resulted from automatic responses to human faces, as opposed
to a more cognitive representation of the human audiences as having a capacity for intentional
reasoning (e.g., Nass et al., 2000). However, this is not inconsistent with our proposal that
demonstrating to a computer requires a consideration of its limitations. Demonstrators may
have overcome a default tendency to take their social partner’s cognitive and reasoning capacity
for granted when they were faced with a non-human agent. In addition, to our knowledge,
these automatic social accounts would not produce the demonstration differences we saw for
the toddlers and adults. It seems that to make such an account feasible it would be necessary
to add a social module that would be sensitive to within-species differences in capacities and
would produce variations in levels of social behavior according to these capacities. These
seem a heavy load for an automatic constraint.

Our research suggests that adults consider differences in their audiences when demon-
strating actions. This tendency was present for two human audiences, as well as human and
mechanical audiences. The results are consistent with the claim that participants may have
considered their audiences’ capacity for intentional reasoning when designing their demonstra-
tions, but the exact mechanism underlying this tendency remains in question. As mechanical
artifacts become more ingrained into our day-to-day lives, there will be an increasing need
to understand the factors that shape our beliefs about the systems and interactions with the
technology. This study is a first step at answering these central questions.

Notes

1. During each demonstration, the handtracking system took hand position measurements
(samples) approximately every 0.03 sec, although varied slightly around that sampling
time between different samples. The threshold for considering a hand as paused was
set so that if the hand traveled less than 0.06 in. between two samples, the hand was
considered paused. Therefore, the pause threshold velocity was approximately 0.06
in./0.03 sec = 2 in. per second, although varied slightly around that velocity depending
on the exact amount of time between two samples.

2. The pause abruptness measure examined the seven hand position samples prior to a
pause. Because samples were taken approximately every 0.03 sec, this amounted to
examining approximately the 0.21 sec prior to a pause.
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