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Abstract

Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent
of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing
Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly
to statistics of the world, they reflect averages over many individuals. On the conjecture that the accuracy
of the group response is chiefly a consequence of aggregating across individuals, we constructed simple,
heuristic approximations to the Bayesian model premised on the hypothesis that individuals have access
merely to a sample of k instances drawn from the relevant distribution. The accuracy of the group
response reported by Griffiths and Tenenbaum could be accounted for by supposing that individuals
each utilize only two instances. Moreover, the variability of the group data is more consistent with
this small-sample hypothesis than with the hypothesis that people utilize veridical or nearly veridical
representations of the underlying prior distributions. Our analyses lead to a qualitatively different view
of how individuals reason from past experience than the view espoused by Griffiths and Tenenbaum.

Keywords: Bayesian models; Everyday reasoning; Normative models; Wisdom of crowds; Instance-
based reasoning

1. Introduction

In 1906, Francis Galton was impressed with an event in which visitors to the West of
England Fat Stock and Poultry Exhibition were each asked to write down their individual
estimates of the weight of a certain ox. Obtaining the original responses, Galton noted that the
group average (1,197 pounds) was strikingly close to the measured weight of the ox (1,198
pounds). This effect, ultimately a reflection of the statistical law of large numbers, has come to
be commonly referred to as the Wisdom of Crowds effect (see Surowiecki, 2004, for a highly
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readable review). The present article points out that this phenomenon can lead to an inflated
estimate of the amount of information individuals possess about real-world distributions.

Griffiths and Tenenbaum (2006; henceforth abbreviated G&T) evaluated individuals’ ability
to make conditional estimates regarding “everyday” domains with which they would have had
some first- or second-hand experience. Some were commonplace, such as human lifespans
and movie run times; others were less so, such as cake baking times and the reigns of pharaohs.
In their study, G&T asked individuals questions such as

1. If you were assessing an insurance case for an 18-year-old man, what would you predict
for his lifespan?

2. If your friend read you her favorite line of poetry, and told you it was line 5 of a poem,
what would you predict for the total length of the poem?

3. If you opened a book about the history of ancient Egypt to a page listing the reigns
of the pharaohs, and noticed that at 4000 BC a particular pharaoh had been ruling for
11 years, what would you predict for the total duration of his reign?

4. If you were calling a telephone box office to book tickets and had been on hold for
3 minutes, what would you predict for the total time you would be on hold?

The average responses revealed what G&T termed a “close correspondence between peoples
implicit probabilistic models and the statistics of the world” (p. 767). To elaborate, G&T con-
structed a normative prediction based on Bayesian inference and a veridical prior distribution
over the domains in question, which G&T were able to obtain from various sources on the
Web (e.g., mortality statistics by age).

The normative model yielded an excellent fit to the human predictions, suggesting that the
computations underlying higher-level kinds of judgment and reasoning may have a statistical
sophistication that has often been assumed to be absent from the domain of higher-order
cognition (even though it is often believed to be present in perceptual inference). We now
describe the G&T analysis in more detail, and then propose an alternative account, which
suggests quite different conclusions about the nature of higher-level judgment and reasoning.

2. The G&T analysis

Consider a prediction query of the form, “If a person has lived to age tcur, what age ttotal

are they likely to live to?” G&T modeled human predictions with a theory based on four key
claims:

1. Optimal (Bayesian) inference: Individuals make a prediction for ttotal in accordance with
Bayes rule, which specifies the posterior distribution for ttotal as:

p(ttotal|tcur) = p(tcur|ttotal)p(ttotal)∫
τ
p(tcur|τ )p(τ )

. (1)

2. Prior distribution: Past real-world experience provides individuals with a veridical prior
distribution over the domain in question, p(ttotal). For example, in the case of predicting
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human lifespans, G&T claim that individuals have available a distribution that specifies
the probability of living to age ttotal for any ttotal.

3. Likelihood function: Prediction within the Bayesian framework requires an assumption
about how the query was generated (i.e., how the experimenter selects a value of tcur).
In the prediction equation, this assumption is cast as p(tcur|ttotal). G&T hypothesize that
individuals assume that the experimenter first has in mind a value of ttotal, and then
chooses a tcur from a uniform distribution over the interval [0, ttotal]. In Tenenbaum and
Griffiths (2001), this assumption is referred to as the size principle.

4. Prediction function: Formulating a scalar prediction for ttotal requires summarizing the
posterior distribution, p(ttotal|tcur), in some manner. G&T assume that individuals com-
pute the median of the distribution.

3. An alternative approach: Reasoning from samples

Suppose that individuals do not have available veridical prior distributions over each do-
main, but can recall merely a sample of instances of size k that they have encountered or heard
about. Let’s refer to this conjecture as the k-sample hypothesis. If k is small, each individual
has sparse knowledge. For example, knowing about k = 2 poems that have 5 and 12 lines
total is hardly what one would consider to be a “close correspondence” to the veridical prior
distribution, p(ttotal), over poem lengths, which requires knowledge of the proportion of all
poems that have length ttotal for all ttotal.

Although individuals have sparse knowledge according to the k-sample hypothesis, the
collective mind of the crowd may have a far more complete picture of the veridical prior
distribution. One should thus be wary of assuming that each individual possesses whatever may
be implied by the aggregate data. The history of experimental psychology contains many such
examples of misleading aggregate data (e.g., see Estes, 1956; Maddox, 1999; Siegler, 1987).

Our investigation of the k-sample hypothesis asks two distinct, but related, questions. First,
how small can k be and still obtain predictions of comparable accuracy to the G&T-Bayesian
model? Second, can the computation of the G&T-Bayesian model—even with the veridical
prior distribution replaced by a noisy sample-based prior distribution—be simplified by some
heuristic algorithm? To anticipate our results, we find that a heuristic algorithm with k = 2
obtains fits as good as, if not better than, the G&T-Bayesian model. This result suggests a
different perspective on everyday reasoning than the G&T-Bayesian model implies.

3.1. The minimum-of-k-samples model

We now elaborate the k-sample hypothesis into a simple heuristic model, which we refer to
as the minimum-of-k-samples model, or Mink. Like the G&T-Bayesian model, Mink predicts
a quantity ttotal given a value of the query point, tcur, for some domain. The model may not
have the theoretical elegance of the G&T-Bayesian model, but it is intuitive and directly maps
to cognitive mechanisms.

Given a query, Mink posits that an individual first retrieves a sample of k instances from
memory. The model is neutral as to whether memory retrieval is implicit or explicit. Of the
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retrieved samples, only those with values at least as large as tcur are relevant to the query. (If
the query specifies a movie has already grossed $20 million, then any movie known to gross
less than $20 million is irrelevant because it fails to satisfy the presupposition of the query.)
Discarding the irrelevant samples, the individual reports the minimum value of the remaining
samples. When all available samples are irrelevant to the query, the individual ventures a guess
that is proportional to the query point, tcur (e.g., if the query concerns the total baking duration
of a cake that has been in the oven for 60 minutes, the individual might simply guess 25%
above the current baking time, or 75 min).

Formally, Mink operates as follows:

1. A set of k samples, S = s1, s2, . . . , sk, is drawn from the prior distribution of the domain.
2. Irrelevant samples are discarded, forming a new set S ′ = {si |si ≥ tcur}.
3. If |S ′| > 0, the model’s prediction is mini s

′
i .

4. If |S ′| = 0, the model’s prediction is a proportion g larger than the query, i.e., (1 + g)tcur.

We wish to emphasize that Mink does not require any individual to internalize the veridical
prior. Only nature needs to know the prior in order to serve up k samples to any individual.

Finding the minimum of the samples seems arbitrary; why not the mean or the max?
One argument is that individuals may treat the task as a search for a sample that is
similar to but larger than the query, tcur. The minimum of the samples is the nearest
neighbor to tcur. In essence, the Mink model suggests that individuals treat the task as
a memory retrieval task, and base their response on similarity of the query to the stored
instance.

3.2. The G&T k-samples model

In addition to the heuristic Mink model, we also explored two variants of the G&T-Bayesian
model that utilize only k samples. Rather than utilizing the veridical prior distribution, these
variants base the prior solely on the k samples. In the first variant, which we refer to as
GTkGuess, the prior is defined to have probability mass

P̂ (ttotal) = 1

k

k∑
i=1

δsi ,ttotal, (2)

where δ.,. is the Kronecker delta. Just as Mink needed to handle the situation in which the
available samples are irrelevant to the query, so must GTkGuess because the posterior is
undefined in this situation and cannot serve as the basis for a response. One solution—as the
“guess” in GTkGuess implies—is to make the same assumption that Mink does: Individuals
formulate a guess that is a fixed proportion g above the query point. The formal definition of
GTkGuess is, therefore identical to Mink, with the “min” function in Step 3 of the algorithm
replaced by the median of the posterior (Equation 1), computed using the sample prior
(Equation 2).

The second variant of the G&T-Bayesian model we propose, which we refer to as
GTkSmooth, solves the undefined-posterior problem in perhaps a more principled manner
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than GTkGuess, and in a manner more in the spirit of probabilistic approaches. GTkSmooth
assumes that individuals treat the samples not as single observations, but as represen-
tative of a distribution of cases (e.g., a Gaussian distribution centered on the sample,
truncated at zero)—that is, the prior distribution is a smoothed version of that used in
GTkGuess:

P̂ (ttotal) ∝

⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

exp

(
(ttotal − si)2

2σ 2

)
for ttotal ∈ N

0 otherwise.

(3)

Because the prior has nonzero probability mass for all ttotal ∈ N, the posterior can be determined
regardless of whether the sample values are larger than tcur. Although this blurring of the
samples is a more elegant assumption than the g guessing factor, it nonetheless also involves
one free parameter, σ .

4. Methodology

Griffiths and Tenenbaum (2006) reported results from eight domains: cake baking times
(in minutes), terms of U.S. representatives (in years), lifespans (in years), movie grosses (in
hundreds of million dollars), pharaoh reigns (in years), poem lengths (in lines), movie run
times (in minutes), and waiting times (in minutes).

For each domain, G&T collected data from over 125 participants: 126 participants for
cakes, 130 for U.S. representatives, 197 for lifespans, 174 for movie grosses, 191 for pharaoh
reigns, 197 for poems, 136 for movie run times, and 158 for waiting times. Each participant
was queried with one of five values of tcur for a domain; for example, the query values for
cake baking times were 10, 20, 35, 50, or 70 minutes.

To obtain predictions from our three models—Mink, GTkGuess, and GTkSmooth—we
simulated the same number of participants for each query as G&T tested. The procedure for
obtaining a prediction from each simulated participant is presented above. Tom Griffiths pro-
vided us with the empirical prior distributions from six of the domains, obtained from sources
on the World Wide Web (see Griffiths & Tenenbaum, 2006). For the other two domains—wait
times and pharaohs—G&T did not use an empirical prior, but instead used hypothetical
priors—a power-law distribution for wait times and an Erlang distribution for pharaohs. Each
of these distributions had one free parameter that G&T fit to the human data. (The Erlang has
two free parameters, but one was constrained such that the mean of the distribution matched
participants’ estimate of the average reign of pharaohs.) Although we could legitimately have
set these parameters to obtain the best fit to our model, we instead used the same parameters
as G&T. Each of our models had one free parameter: g for Mink and GTkGuess, and σ for
GTkSmooth. We coarsely tuned the free parameters by hand to obtain the best performance,
which yielded the multiplicative guessing factor g = 0.30 and the prior-smoothing parameter
σ = 10.
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Fig. 1. (a)–(h) Human and simulation results on eight everyday prediction tasks. Note: The squares indicate
median human responses from the experiments of Griffiths and Tenenbaum (G&T; 2006). The G&T-Bayesian
model prediction is indicated by the dashed line. The Min2 prediction, with g = 0.3, is indicated by the solid
line. The error bars surrounding the human data and the Min2 predictions at the query points denote ±2 SDs in
experimental outcome. The error bars for the human data were obtained by G&T via bootstrap sampling; the error
bars for Min2 were obtained via 100 replications of the simulation experiment. (i) The lifespan simulation with
g = 0.03.

5. Results

5.1. Mink versus G&T-Bayesian

G&T summarized the outcome of each experiment via the median response of the partic-
ipants to each query. We did the same for Mink with k = 2 (i.e., Min2), yielding a single
prediction from the model for each simulation experiment. We performed 100 replications of
the simulation experiment, and obtained the mean and standard deviation over replications of
the simulation experiment.
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Fig. 1a through h shows predictions for the eight domains studied by Griffiths and Tenen-
baum (2006). Each graph includes the median predictions of human participants in the G&T
experiments (blue squares), predictions from the G&T-Bayesian model (dashed lines), and
predictions from Min2 g = 0.3 (solid lines). The error bars on the human data and on Min2
will be discussed shortly.

To quantify the goodness of fit of each model to the data, we computed the normalized root
mean squared error (NRMSE) between the models and the data at the query points, defined as

NRMSE =
(∑Q

q=1(hq − mq)2∑Q
q=1(hq − h̄)2

)1/2

, (4)

where hq and mq are the human data and model prediction for query q, and h̄ is the mean
human response across queries. The second and third columns of Table 1 show the NRMSE
for G&T-Bayesian and Min2 for each of the eight domains. All simulations use g = 0.3,
except for the score in parentheses for the lifespan simulation, which we discuss shortly. The
Min2 scores that outperform G&T-Bayesian are highlighted in boldface type. By the NRMSE
measure, Min2 achieves a better fit on five of the eight domains.

The fourth and fifth columns of Table 1 show a different measure of fit for the two models:
the mean normalized deviation (MND), which indicates the deviation of the model from the
data relative to the uncertainty in the data:

MND = 1

Q

Q∑
q=1

|hq − mq |
sq

, (5)

where sq is a bootstrap estimate of the standard deviation in the outcome of the human
experiment (details follow). The MND places less weight on the less reliable data points.

Table 1
Comparison of G&T-Bayesian and Min2

NRMSE MND

Domain G&T-Bayesian Min2 G&T-Bayesian Min2

Cake baking 0.38 0.17 1.79 1.13
Congressional terms 0.20 0.16 1.64 1.10
Movie grosses 0.20 0.17 2.12 1.83
Waiting times 0.08 0.05 0.52 0.25
Poem lengths 0.15 0.13 1.20 0.94
Movie run times 1.06 1.21 1.73 1.69
Pharaoh reigns 0.33 0.45 0.47 0.74
Lifespans 0.26 1.26 (0.20) 2.39 4.71 (1.26)

Note. G&T = Griffiths and Tenenbaum (2006); NRMSE = normalized root mean
squared error; MND- mean normalized deviation.

The Min2 scores that outperform G&T-Bayesian are highlighted in boldface type.
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The MND measure yields essentially the same result as the NRMSE: Min2 outperforms
G&T-Bayesian on six of the eight domains.

Let’s examine where Min2 fails. Although the pharaoh-reigns NRMSE is higher for Min2
than G&T-Bayesian, it is difficult to see a qualitative difference in performance between
the models (Fig. 1g). G&T-Bayesian does come closer than Min2 to human data for query
points tcur = 1, 7, 11; but as the error bars suggest, these are the least reliable data. (More
on the error bars shortly.) Moreover, the predictions of G&T-Bayesian for this particular data
set were based not on a veridical prior distribution, but on a hypothetical prior distribution
constructed by G&T. G&T found that their model produced a poor fit to the data using the
veridical prior. Consequently, G&T assumed that participants did not have much knowledge of
pharaoh reigns beyond the general shape and mean of the distribution. G&T therefore elected
to use an Erlang distribution with one free parameter to fit the data. (The Erlang has two
free parameters, but one was constrained by the mean reign.) We did not tune the parameter
for fits with Min2. Therefore, G&T-Bayesian had an additional degree of freedom that Min2
did not.

For the movie run times (Fig. 1f ), G&T-Bayesian is a bit closer on query points tcur =
60, 80—although both models significantly underpredict the data—and Min2 is a bit closer
on query points tcur = 30, 110. As the MND measure suggests, when the unreliability of the
data is taken into account, performance of the two models is comparable.

The third domain for which Min2 underperformed G&T-Bayesian was lifespans. As
Fig. 1h makes evident, the poor fit of Min2 stems from the rightmost query point,
tcur = 96. For tcur = 96, Min2 is unlikely to sample an individual who lived beyond this age;
consequently, the model will guess using the g factor, which will produce a prediction of 124.8
years for the lifespan. Certainly, participants in the G&T experiment are aware that people
rarely live to this age, and as a result might lower their guess. Because g has a significant effect
on only the final query point, we might lower g for this domain to reflect general knowledge
about lifespans. Reducing g by a factor of 10, Min2 outperforms G&T-Bayesian, shown in
Fig. 1i and quantified by NRMSE and MND (numbers in parentheses in Table 1).

We again emphasize that Min2 outperforms G&T-Bayesian on five of the eight domains.
We discussed the three remaining domains in detail to convince the reader that Min2 shows no
pathological deficiency. Our aim is not to argue than Min2 is superior to G&T-Bayesian, but
only that a preference for one model or the other cannot be justified on the grounds of data fit.
In fairness, we note that Min2 has a free parameter, g. Although this free parameter was chosen
to fit the human data, it has a relatively weak effect on the model’s predictions, and its effect
is primarily seen for the rightmost query point of each graph, where the set of samples drawn
beyond the query point is most likely to be empty. We also had freedom in choosing how g

influences the prediction. Although g might have been an additive constant, a multiplicative
constant makes the most sense given that we wanted to allow only one free parameter for all
eight domains, the currency of the domains vary, and a multiplicative constant is scale invariant,
whereas an additive constant is not. Although the free parameter does make a comparison
between G&T-Bayesian and Min2 challenging, we will show in the next two sections that
(a) the need for the free parameter is due to the fact that the Min2 is sample based, and not the
fact that Min2 lacks the theoretical foundation of G&T-Bayesian; and (b) Min2, as well as other
sample-based models, is able to explain aspects of the data that G&T-Bayesian cannot address.
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5.2. Comparing sample-based models

In the previous section, we illustrated that Min2, a model based on a very small sample
size, provides as good an account of individuals’ everyday predictions as the G&T-Bayesian
model. Min2 serves as a proof of the sufficiency of two samples to explain the data.

In this section, we argue for the robustness of the result obtained with Min2 by exploring
three small-sample models—Mink, GTkGuess, and GTkSmooth—for sample sizes k ranging
from 1 to 5, and showing that many models based on small sample sizes are adequate to
explain the data. The simulation results we report here are for a single simulation experiment
with 10,000 simulated participants for each model, a large enough population to ensure the
reliability of the median response, and therefore the estimate of NRMSE.

Fig. 2 contains one bar graph for each of the eight domains, and a final bar graph for
lifespans with g = .03 (as in Fig. 1). The ordinate of each graph is the model NRMSE. The
horizontal dashed line shows the NRMSE for G&T-Bayesian. The bars show NRMSE for
the three sample-based models as a function of k. Let’s first consider the domains in Fig. 2a
through e. In all of these domains, GTkSmooth performs poorly relative to the other models.
However, Mink and GTkGuess all match or beat the performance of G&T-Bayesian for all
values of k, except perhaps for the poem domain and k = 1. Now consider the final three
domains in Fig. 2f through h. In these domains, GTkSmooth performs well for all k > 1.
Mink and GTkGuess perform well for certain values of k in Fig. 2f and g, although GTkGuess
seems more robust than Mink as a function of k. For Fig. 2h, the lifespan simulation, neither
Mink nor GTkGuess perform well, unless the guessing constant g is lowered (Fig. 2i).

Overall, we see that GTkSmooth, the most principled Bayesian sample-based approach, is
least convincing in its performance. Mink does well for a small k, but in some domains, the fit
worsens as k increases. This result is due to the fact that the model’s predictions drop to the
query point as k increases. Nonetheless, Mink was proposed for situations where k is likely
to be small.

GTkGuess can be viewed as a hybrid of Mink and G&T-Bayesian. For k = 1, 2, GTkGuess
yields exactly the same predictions as Mink. As k → ∞, GTkGuess approaches G&T-
Bayesian because the sampling and guessing assumptions of GTkGuess become irrelevant.
Thus, it is not surprising that GTkGuess is quite robust over values of k. We therefore view
GTkGuess not as a competitor to Mink, but rather as a general description of a class of models
that is equivalent to Mink for small k—the focus of our discussion.

5.3. Individual variability

We have argued for the plausibility of Mink but the results thus far do not allow us to
distinguish between: (a) the view espoused by Mink that each individual reasons based on a
few samples, and accuracy arises by combining predictions over individuals; and (b) the view
espoused by G&T-Bayesian that each individual holds a veridical prior distribution in his or
her mind; or (c) some intermediate state of affairs.

The key empirical distinction that arises between these perspectives is in the variability
of individual responses. If each individual reasons from a small number of samples, and
the samples available to one individual are independent of the samples available to another
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Fig. 2. (a)–(h) Normalized root mean squared error (NRMSE) evaluation of Mink, GTkGuess, and GTkSmooth
for k = 1 . . . 5 on eight domains. Note: Mink and GTkGuess scores are based on g = 0.30, and GTkSmooth scores
are based on σ = 10. (i) NRMSE evaluation of the Lifespans data set with g = 0.03 for Mink and GTkGuess.

individual, responses will be highly variable. As sample size grows, the sample statistics of two
individuals will become more similar, and response variability will drop. Thus, the response
variability of human participants can be used to infer the sample size on which reasoning
is based. (If we are incorrect in our assumption concerning the independence of samples
available to two individuals, variability will be low and not diagnostic of k. Fortunately, it
turns out that observed variability is high, as we will show.)
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G&T report one measure of variability: a bootstrap estimate of inter-experiment variance.
This estimate indicates the variability one would expect if the entire experiment were replicated
many times. Replicating the experiment involves obtaining data from 125+ participants, and
then computing the median predictions. The human data in Fig. 1 includes error bars that
denote ±2 standard deviations on the inter-experiment distribution, as G&T estimated by a
1,000-sample bootstrap. We also estimated inter experiment variance with Min2, and the Min2
predictions at the query points are shown with error bars that denote ±2 standard deviations.
Because simulation studies permit an unlimited supply of simulated participants, instead of
bootstrap sampling a finite set of participants, we simply generated new participants for each
of 1,000 replications of the experiment.

As the error bars clearly indicate, the variability of the human participants is at least as
large as that obtained by Mink. Thus, although Mink produces significant inter-participant
variability because each response is based only on k samples, this variability is no larger than
that observed in the G&T human studies.

A more direct measure of variability than inter-experiment variance is the inter-participant
variance. Because G&T report as a summary statistic the median participant response, not
the mean, the inter-participant variance is not equivalent to the inter-experiment variance.
Nonetheless, they should be strongly related. Inter-participant variance was not discussed by
Griffiths and Tenenbaum (2006), but Tom Griffiths kindly provided us with the raw data to
compute inter-participant variance. Fig. 3 presents a measure of the inter-participant vari-
ability in human responses relative to the inter-participant variability of model responses for
domain d,

V (d) = 1

Q

Q∑
q=1

log10
vh(d, q)

vm(d, q)
, (6)

where vh(d, q) is the inter-participant variance for domain d and query point q from the human
experiment, vm(d, q) is the same measure from the model, and Q is the total number of query
points (5 in these experiments). If the human variability matches the simulation variability,
V (d) will be zero; if individuals are more variable than the simulation predicts for a given k,
the value will be positive.

Mink, GTkGuess, and GTkSmooth all show the same pattern: The models produce less
variability as k increases, just as one would expect. What is surprising is that for k > 1,
V (d) > 0 (i.e., all models show less variability than the human participants). This result
provides strong evidence that human participants do not rely on a large number of cases in
making everyday predictions. If participants relied on, say, k = 20 cases, then according to
the three models, the inter-participant variance would be far smaller than is actually observed.
What might be problematic for the sample-based models is the fact that human participants
show more variability than the models for k as small as 1 or 2. We have two explanations
for this finding. First, when the models formulate a guess based on the g factor, the resulting
variability will be small, and it might be more realistic to treat g not as a constant but a random
variable, which will increase the variability of the model’s predictions. Second, eyeballing the
human data, participants clearly seem to be rounding their predictions in a domain-appropriate
manner. For example, for cake baking times, waiting times, and movie run times, most reported
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Fig. 3. Inter-participant variance of humans relative to inter-participant variance of simulation models (see Equa-
tion 6), for eight domains and three models—-Mink (solid lines), GTkGuess (dashed lines), and GTkSmooth
(dotted lines)—as a function of k. Note: An ordinate value of zero corresponds to equal variance of humans and
simulation; the larger the value, the greater the variance of humans relative to the simulation.

times on the 15- or 30-min marks. It is easy enough to justify the introduction of additional
noise sources to the models to raise their response variability to the level of human participants.
However, had we obtained the result that the models with small k yielded far more variability
than the participants, we would have been forced to admit the failure of the models and,
consequently, reject the small-sample hypothesis.
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6. Discussion

When the Griffiths and Tenenbaum (2006) article first appeared, its conclusion that everyday
reasoning can be cast as optimal (Bayesian) inference seemed astonishing and radical to many
who learned of the work. Beyond surprise, many were swayed by the elegance of the work.
The research also had an impact outside the academic community. Consider the following
quote, from The Economist:

[Griffiths and Tenenbaum] . . . put the idea of a Bayesian brain to a quotidian test. They
found that it passes with flying colors.
The key to successful Bayesian reasoning is . . . in having an appropriate prior, as it
is known to the cognoscenti. This prior is an assumption about the way the world
works—in essence, a hypothesis about reality—that can be expressed as a mathematical
probability distribution of the frequency with which events of a particular magnitude
happen. . . .

With the correct prior, even a single piece of data can be used to make meaningful
Bayesian predictions.
Indeed, one of the most impressive things Dr Griffiths and Dr Tenenbaum have shown
is the range of distributions the mind can cope with. Besides Erlang, they tested people
with examples of normal distributions, power-law distributions and, in the case of baking
cakes, a complex and irregular distribution. They found that people could cope equally
well with all of them, cakes included. Indeed, they are so confident of their method that
they think it could be reversed in those cases where the shape of a distribution in the
real world is still a matter of debate. (pp. 70–71)

The message transmitted by G&T’s work is that individual minds encode complex prior
distributions in domains casually encountered in daily life, and that individual minds are
Bayesian and utilize these prior distributions to draw complex inferences. In contrast, the
present article shows that the results are quite consistent with a far less dramatic possibility:
Individual minds may reason from only a small number of instances—one, two, or three—and
that the mechanisms of reasoning may be simple heuristic algorithms.

How can these two perspectives—embodied in the G&T-Bayesian and Mink models—both
be consistent with the data? One answer lies in the wisdom of crowds. Even if any one
individual has very limited knowledge and inference capabilities, combining estimates over a
population allows the population to be well characterized from a Bayesian perspective.

6.1. Levels of analysis

A proponent of Bayesian approaches may argue that G&T-Bayesian is something like what
linguists have referred to as a competence theory, whereas Mink is a performance theory. That
is, Mink is a mechanistic approximation of the G&T-Bayesian theory in which only a small
number of instances are accessible to an individual for reasoning. Mink does not preclude the
possibility that different instances are available to an individual at different times.

Alternatively, one might cast the two theories as being at different levels of analysis in the
Marr sense: G&T-Bayesian is a computational level theory, whereas Mink is an algorithmic
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level theory. Mink and G&T-Bayesian are similar, in some sense: The predictions of the two
models for a large population average are similar (Fig. 1).

Moreover, there is some non-accidental correspondence between Mink and G&T-Bayesian.
Mink utilizes the heuristic of reporting the minimum value of the k samples recalled. This
heuristic might be viewed as an approximation to the Bayesian size principle, which biases
the posterior distribution to smaller hypotheses. The Mink approximation is best for small k,
and small k seems to obtain the best fits to human data (Figs. 2 and 3).

If our investigations had found that Mink or some other sample-based model required,
say, k = 20 samples per individual to match the data, we would not have considered the
sampling account to be a qualitatively different story than the G&T-Bayesian account. How-
ever, when k = 2 samples per individual accounts for the data, our sense is that the Mink

and G&T-Bayesian accounts have to be viewed as qualitatively distinct. Certainly, the sort of
interpretation described in the Economist article would not be consistent with Mink.

One point that a competence-performance or levels-of-analysis distinction makes is that
the Bayesian formalism is sufficiently broad that nearly any heuristic or mechanistic account
can be cast in Bayesian terms, given the right set of assumptions. Although there is no doubt
that it is often very illuminating to view human reasoning from a Bayesian perspective,
an overemphasis on the ways in which reasoning conforms to Bayesian principles may draw
attention away from important psychological distinctions, and may obscure important memory
and processing limitations of human reasoning.
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