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Abstract 

A long-standing difficulty for connectionism has been to 
implement compositionality, the idea of building a knowledge 
representation out of components such that the meaning arises 
from the meanings of the individual components and how 
they are combined. Here we show how a neural-learning 
algorithm, knowledge-based cascade-correlation (KBCC), 
creates a compositional representation of the prime-number 
concept and uses this representation to decide whether its 
input n is a prime number or not. KBCC conformed to a basic 
prime-number testing algorithm by recruiting source networks 
representing division by prime numbers in order from 
smallest to largest prime divisor up to √n. KBCC learned how 
to test prime numbers faster and generalized better to 
untrained numbers than did similar knowledge-free neural 
learners. The results demonstrate that neural networks can 
learn to perform in a compositional manner and underscore 
the importance of basing learning on existing knowledge.  

Keywords: knowledge-based learning; compositionality; 
KBCC; prime-number testing.  

Introduction 

Compositionality 
Compositionality is the idea of building a problem 
representation out of components such that the meaning 
comes from the meanings of the components and the way 
they are combined (Fodor & Pylyshyn, 1988). In a 
compositional representation, there is a distinction between 
structurally atomic and molecular representations.  
Structurally molecular representations have syntactic 
constituents that are themselves either structurally molecular 
or are structurally atomic, and the semantic content of a 
representation is a function of the semantic contents of its 
syntactic parts, together with its constituent structure. For 
example, consider the sentence The princess kissed the frog. 
The meaning of this sentence can be computed from the 
meanings (semantic content) of the units the, princess, 
kissed and frog, and their positions in the sentence 
(constituent structure). Changing the word order changes the 
meaning, so that the sentence The frog kissed the princess 
conveys a different idea.  

Compositionality exists in a variety of psychological 
functions, not only in language (Bregman, 1977). For 
example, related arguments were made about similarity 
comparisons sometimes requiring a focus on structural 

relations between elements rather than mere attributes of the 
elements being compared (Gentner & Markman, 1993).  

A symbolic expression exhibits what is called 
concatenative compositionality, which means that the 
expression incorporates its constituents without changing 
them, something that is supposed to be impossible for neural 
networks (Fodor & Pylyshyn, 1988). In response to this 
challenge, it has been argued that current neural networks 
exhibit a unique functional form of compositionality that 
may be able to model the compositional character of 
cognition even if the constituents are altered when 
composed into a complex expression (van Gelder, 1990). 
Perhaps the original constituents could be retrieved from a 
complex expression by natural connectionist means. For 
example, an encoder network can learn to encode simple 
syntactic trees on distributed hidden unit representations and 
then decode them back into the same syntactic trees at the 
outputs (Pollack, 1990). We argue later in this paper that a 
newer connectionist algorithm implementing knowledge-
based learning can exhibit concatenative compositionality.  

Prime numbers  
One area in which to study the issue of compositionality is 
that of testing for prime numbers. Is an integer n a prime 
number or not? A prime number is a natural number that has 
exactly two different divisors, 1 and itself. A number that 
has more than two divisors is composite. The number 1 is 
neither composite nor prime.  

At first glance, the most intuitive way to test whether n is 
a prime number is by checking whether n is divisible by any 
numbers between 2 and n – 1. However, this test can be 
much more efficient (Nagell, 1951). First, because n is 
divisible by a number in the interval [2, n - 1] if and only if 
it is divisible by a number in the interval [2, √n]1, it is 
sufficient to check whether n is divisible by any number in 
that interval [2, √n]. Second, if n is divisible by a composite 
number in the interval [2, √n], then n is also divisible by all 
prime factors of that composite number. Therefore, it is 
sufficient to check whether n is divisible by any primes in 
the interval [2, √n]. For example, 105 is a composite number 
because it is divisible by 3, a prime number in the interval 
[2, 10]. 

In short, to test whether a number n is a prime number, 
one could divide n by all the primes in increasing order, up 
                                                           
1 Throughout this paper, √n denotes the integer part of a real 
number, e.g., 2.3 is interpreted as 2.  
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to the integer part of the square root of n, stopping when a 
successful divisor is found. Thus, the statement that n is 
prime can be represented in a compositional fashion by the 
Boolean expression: ¬(n is divisible by 2) ∧ ¬(n is divisible 
by 3) ∧ … ∧ ¬(n is divisible by √n). In this representation, 
propositions of the form n is divisible by x correspond to 
syntactic units. These syntactic units have their own 
semantic content (i.e., a number n is divisible by number x). 
The semantic content of the overall expression is a function 
of the syntactic units, together with the constituent structure. 
The constituent structure is expressed by the Boolean 
operators not and and.  

To demonstrate that constituent structure plays an 
essential role in the semantic content of the overall 
expression, consider a different Boolean expression: (n is 
divisible by 2) ∧ ¬(n is divisible by 3) ∧ (n is divisible by 5) 
∧ ¬(n is divisible by 7) …. The syntactic parts are exactly 
the same as before but the constituent structure is different. 
Accordingly, the meaning of the overall expression has 
changed. Here the expression means that n is divisible by 
prime numbers in odd positions, but is not divisible by 
prime numbers in even positions in the list of prime 
numbers. 

So far the only psychological evidence on how ordinary 
people test prime numbers comes from continued 
educational use of the ancient sieve of Eratosthenes (circa 
200 BC). In number theory, a sieve is a process of 
successively eliminating members of a list according to a set 
of rules such that only some members remain. With 
Eratosthenes’ method, all integers from 1 to n are inscribed 
on paper. Because 1 is not a prime, it is crossed out. The 
smallest remaining number, 2 is a prime number. All other 
multiples of 2 are crossed out because they are composites. 
The next smallest remaining number 3 is the next prime 
number. All other multiples of 3 are similarly crossed out 
because they are composite numbers. This process is 
repeated until the next divisor is greater than √n, by which 
time all the composites have been crossed out. Numbers not 
crossed out comprise all the primes from 2 to n. An 
interesting feature of this method is that the smaller the 
prime number, the more composite numbers it eliminates.   

Cascade-correlation 
Cascade-correlation (CC) is a neural-network learning 
algorithm that constructs a feed-forward network as it learns 
(Fahlman & Lebiere, 1990). A CC network initially has no 
hidden units; there is only a randomly-determined direct 
connection from each input to each output unit. Throughout 
this paper, whenever a connection weight is randomized, it 
is set to a random value in the range [-0.5, 0.5] in a uniform 
distribution.  

All the networks in this paper are built out of sigmoid 
units with an offset of -0.5 to center activation around 0:  
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where xj is net input to unit j, e is the base of the natural 
logarithm, and yj is resulting activation value of unit j.  

Net input x to a unit j is computed as a sum of products of 
sending-unit activations yi and connection weights wij: 

∑=
i

iijj ywx  Equation 2 

CC learning begins with reducing network error by 
training weights feeding the output layer. Training these 
output weights is the so-called output phase of CC. Any 
single-layer network learning algorithm could be used to 
train output weights but the usual choice is the Quickprop 
algorithm (Fahlman, 1988). Quickprop works like ordinary 
back-propagation learning except that it employs the second 
(curvature), as well as the first (slope), derivative of the 
error surface to adjust connection weights, thus enabling it 
to reduce error more aggressively (Shultz, 2003). In 
Quickprop, weight change is proportional to the negative of 
slope (the rate at which error changes with a change in 
weight) divided by curvature (the rate at which slope 
changes with a change in weight).  

When output training ceases to reduce error or if error is 
still too high after a specified number of training cycles 
(epochs), training shifts to input phase. In input phase, a 
single new hidden unit is trained and added to the network. 
After the new unit is added, its input weights are frozen and 
a new output phase begins. This two-phase cycle continues 
until error is reduced to a satisfactory level, meaning that all 
output activations are within a specified range of their target 
values, known as the score-threshold. 

In input phase, candidate hidden units receiving incoming 
connections from input units and from pre-existing hidden 
units are trained. In this phase, candidate output is not 
connected to any other unit. The incoming weights of the 
candidate units are initialized with small random weights. 
Next, the set of training examples is cycled through (a single 
epoch) and the weights feeding the candidates are adjusted 
with Quickprop in order to increase S, the magnitude of a 
modified correlation between a candidate unit’s activation 
and network error observed at the output units. Input phase 
ends when S values cease to improve. At this point, the 
candidate unit with the highest absolute correlation is 
connected to all the output units with small random weights 
and a new output phase begins. Usually eight candidates are 
trained in parallel, the best one is installed, and the rest of 
the candidates are discarded.  

The original version of CC is the one just described and it 
is sometimes called deep CC because each new hidden unit 
is installed on its own separate layer, creating a fairly deep 
network topology. However, the version used here is 
sibling-descendant CC (SDCC). In SDCC, two types of 
candidate units are trained. Four of the eight candidate units 
are trained as descendant units like in deep CC (Baluja & 
Fahlman, 1994). The other four candidate units are trained 
as sibling units without receiving any connections from the 
previous layer. Thus, when a sibling unit is installed, 
network depth does not increase.  

Sibling and descendant candidate hidden units compete 
with each other for being recruited. The S values of 
descendant candidates are typically multiplied by 0.8 to 
avoid overly-deep networks resulting from a natural bias to 
recruit the more complex descendant candidates, having 
extra weights from the current highest layer of hidden units. 
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This 0.8 multiplier has been observed to reduce network 
depth without harming network generalization (Baluja & 
Fahlman, 1994).  

A resulting SDCC network then has multiple layers with 
one or more units in each hidden layer. SDCC networks 
have been found to perform similarly to CC networks in 
psychology simulations but with fewer layers and more 
interesting varieties of network topology (Shultz, 2006).  

Knowledge-based cascade-correlation 
Knowledge-based cascade-correlation (KBCC) is a natural 
extension of CC in which the target network can recruit not 
only single hidden units, but also previously-learned 
networks with possibly multiple inputs and outputs (Shultz 
& Rivest, 2001). We refer to previously-learned networks in 
the candidate pool as source networks and to networks 
created by KBCC as target networks.  

Source networks can be installed indirectly or directly. 
When they are installed indirectly, each input of the source 
network has an incoming connection from all inputs of the 
target network, from all outputs of previously installed 
unit(s) and network(s), and from the bias unit. If a hidden 
unit or network was installed as a sibling, there is no 
connection from the current highest layer of hidden units.  

When source networks are installed directly, weights 
connecting the corresponding inputs of the target network 
and the source network are initialized with weights of 1.0 
and the other connection weights are initialized with 
weights of 0.0. This direct connection scheme implies that 
the number of inputs of the target and source networks must 
be the same. Direct connection enables the use of relevant 
knowledge without much additional training.  

In general, all networks have a bias unit sending a 
trainable connection to every other unit and recruited 
network except for the input units. The bias unit has a 
constant activation value of 1.0. All connection weights are 
initialized with random values.  

An example KBCC network from the present project is 
portrayed in Figure 1. This network has a bias unit, nine 
input units, and one output unit. It recruited six source 
networks, installing all of them as siblings on the same 
layer. Further details about KBCC can be found elsewhere 
(Shultz & Rivest, 2001).  

A major advantage of KBCC over previous knowledge-
based learning algorithms is that, with indirect connections, 
KBCC can recruit any function that predicts network error, 
without regard to matching the number and function of input 
units between the source and target networks.  

As noted, a long-standing difficulty for connectionism has 
been to implement compositionality. A goal of this paper is 
to demonstrate that KBCC creates a compositional 
representation of the prime-number concept and uses this 
representation to decide whether its input is a prime number 
or not. We hypothesized that learning a compositional 
representation is faster, results in better generalization to 
input numbers not used in training, and requires less 
recruitment relative to knowledge-free SDCC learning.  

Some evidence already exists for compositionality in 
KBCC solutions. In a task requiring a network to distinguish 
points inside a two-dimensional shape from points outside 

the shape, KBCC recruited source networks representing a 
vertical rectangle and a horizontal rectangle to learn a target 
cross shape (Shultz & Rivest, 2001). Also KBCC recruited 
source knowledge of small checkerboard shapes to learn 
target patterns of larger checkerboard shapes and source 
knowledge of small parity problems to learn target problems 
of larger parity problems (Rivest & Shultz, 2004). 
Knowledge-based learning was considerably faster than 
learning without knowledge, and faster with relevant than 
with irrelevant knowledge.  

Method 

Primality testing 
Given an input number in the range [21, 360], a target 
network had to indicate whether the input was prime or 
composite. There were nine input units because the largest 
number 360 requires nine digits in binary format. There was 
one binary output unit. A target output value of 0.5 
indicated that the input was prime, and -0.5 indicated that 
the input was composite. The score-threshold was 0.4. 
Thirty-four randomly-chosen problem instances not used in 
training (10% of the total) were used to test generalization 
ability of the networks.  

Source networks 
Nineteen SDCC source networks were trained in the 
following way. The input to each source network was a 
number encoded in binary in the range [2, 360]. The binary 
digit 1 was encoded as 0.5, and the binary digit 0 as -0.5. 
Nine input units were needed because the largest number 
360 has nine digits in binary format. Each source network 
was trained to divide its input by a specific number. There 
was a network to divide by 2, a network to divide by 3, and 
so on up to 20. Each source network had one output unit. 
The target output was 0.5 if the input was divisible by the 
number the given network was responsible for and 
otherwise the target output was -0.5. These source networks 
were trained with a relatively low score-threshold of 0.01 to 
ensure that they provided a clear output. We refer to a 
source network that was trained to divide by number x as a 
division-by-x network. 

Conditions 
There was an experimental and two control conditions. In 
the experimental condition, 20 sibling-descendant KBCC 
(SD-KBCC) target networks were trained on primality 
testing. The set of candidate units and networks SD-KBCC 
could recruit from is called the candidate pool. The 
candidate pool here contained the 19 divisor (source) 
networks described earlier. Divisor networks could be 
connected only directly, either as a sibling or descendant of 
the current highest layer. The candidate pool also contained 
four sigmoid units that likewise could be installed as a 
sibling and four that could be installed as a descendant.  

There were also 32 randomized networks in the candidate 
pool that were created in the following way. Four trained 
divisor networks were chosen randomly. The weights in the 
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networks were reset to random values, keeping only the 
structures of the divisor networks. In effect, we erased the 
memory in the source networks, but left all the structure 
intact. For each randomized network, four copies were 
created and put in the candidate pool. The first copy was 
directly connected and the remaining copies were indirectly 
connected. Each copy could be installed as a sibling or a 
descendant. The idea of including these randomized 
networks in the candidate pool was to control for 
complexity of at least some of the recruits. It might be that 
KBCC would recruit the most complex source, regardless of 
whether it contained relevant knowledge. Recruiting trained 
sources over randomized sources would rule out a mere 
preference for complexity and demonstrate a preference for 
relevant knowledge.  

In one control condition, 20 SDCC networks were trained 
on the primality-testing problem. The candidate pool 
contained four sigmoid units that could be installed as a 
sibling and four sigmoid units that could be installed as a 
descendant. Comparison with KBCC networks provided an 
assessment of the impact of prior knowledge, in this case 
knowledge of divisibility with divisors between 2 and 20.  

In another control condition, randomized KBCC, 20 
KBCC networks were trained on the primality-testing 
problem. Their candidate pool was exactly the same as that 
in the KBCC condition except that connection weights in 
the 19 divisor networks were reset to random values. 
Comparison with ordinary KBCC provided another 
assessment of the impact of prior knowledge but with an 
additional control for complexity of the recruits. In this 
condition, there were networks in the candidate pool that 
were just as complex as the candidates in the KBCC 
condition, but they contained no knowledge of divisibility 
because their connection weights were randomized.  

Results 

Performance comparisons 
Numbers of epochs to learn, recruits, and layers, as well as 
percent success on generalization were each subjected to a 
factorial ANOVA with condition as the single factor. 
Results are presented in Table 1 in terms of F ratios and 
comparison of means using Tukey’s HSD test at p < .05. 
KBCC networks learned in fewer epochs than did 
randomized KBCC networks, which in turn learned faster 
than knowledge-free SDCC networks. The same pattern 
held for number of recruits during learning. KBCC and 
randomized KBCC created shallower networks than did 
SDCC. Generalization to untrained numbers was better for 
KBCC than for the other two network types.  
 
 

Table 1:  Comparison of performance means. 
 Condition means F(2, 57) 
Variable KBCC Random SDCC  
Epochs to learn 335 <  1015 <  1122 347 
Recruits 6.00 <   8.60 <   9.95 43.5 
Network layers 1.00 ≈   1.25 <   2.35 26.4 
Generalization 98.7 >   75.1 ≈   73.1 112 

Knowledge-representation analysis 
KBCC networks were subjected to further analysis to 
discover how they managed their successful performance. 
Almost all (17 / 20) KBCC networks had the same structure 
and recruited their sources in the same order. Divisor source 
networks were recruited in the following order: division-by-
3, division-by-5, … , division-by-17 (all primes from 3 to 
17). There were three exceptions and in those networks, 
only the last two recruitments differed from this pattern.  

Weights feeding the recruited source networks were 
extracted from the 17 typical KBCC networks. For each 
source network, weights connecting the input of the target 
network to the corresponding input of the source network 
had values close to 1, and all other weights feeding the 
inputs of the source network had values close to 0. 

Weights going to the output units (output weights) of the 
target network were also extracted from the 17 typical 
KBCC networks. There was one weight from the bias unit, 
nine weights from the input units, and six weights from the 
recruited sources. Because weight patterns of the networks 
were very similar, output weights were averaged over the 17 
typical networks. The mean output weights from the 
recruited source networks, bias unit, and last input unit are 
shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  KBCC network with mean output weights from 
recruited source networks, bias unit, and input 9. 

 
We found that KBCC networks could also be trained and 

tested on the primality of the same input numbers used in 
their source networks. If the KBCC networks were trained 
on numbers in the interval [2, 360], they took longer to learn 
(M = 437 epochs) and recruited more divisor networks (M = 
8.05), but they learned their training patterns perfectly and 
generalized correctly to 98.2% of their test patterns. The 
order of their divisor-network recruits was a bit more 
variable, but still correlated highly with size of divisor (M = 
.86). All but 3 of these 20 correlations were significantly 
positive at p < .05.  

Discussion 
Results showed that KBCC networks learned faster and with 
fewer recruits than did either randomized KBCC networks 
or knowledge-free SDCC networks. This confirms previous 

 

3  5  7 11  13  17
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Bias  1  2  3  4  5  6  7  8  9 Inputs 

Recruits (divide by) 

Output 

9.0 -20.3 

Weights from recruits 
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research showing the superior learning speed of knowledge-
based networks (Shultz & Rivest, 2001), and shows that the 
key advantage of KBCC lies with its knowledge and not the 
mere complexity of its topology. Randomized KBCC 
networks of equal complexity as KBCC networks learned 
faster and with fewer recruits than did SDCC networks, 
showing that complexity alone has some beneficial effect.  

Generalization, often considered to be an essential 
characteristic of successful learning, was nearly perfect in 
KBCC networks and considerably better than in either 
randomized KBCC or SDCC networks. This indicates that 
knowledge-based learning in KBCC differs not only in 
speed and efficiency but also in quality of learning.  

At first glance, it may seem that randomized-KBCC and 
SDCC networks generalized rather well on their test 
problems at 75% and 73% success, respectively. However, 
because only 19% of the integers in the range [21, 360] are 
prime numbers, a system can do well (81% success) by 
guessing that every integer in that range is composite. Thus, 
learning to test for prime numbers appears to be sufficiently 
challenging that knowledge-based learning is required for 
correct generalization. This is the first task we have studied 
in which CC or SDCC networks could not eventually catch 
up to the learning quality of KBCC networks. In that sense, 
the present results underscore the importance of knowledge-
based learning. It may be that some tasks can only be 
learned by building on existing knowledge.  

It is interesting that KBCC networks recruited only those 
six source networks that were trained to divide by the prime 
numbers from 3 to 17 (3, 5, 7, 11, 13, and 17) and recruited 
them in that precise order from smallest to largest. This is in 
accord with the basic primality-testing method discussed in 
the introduction. KBCC target networks avoided recruiting 
division-by-composites networks, any networks with 
divisors greater than √n, even if the divisor was a prime 
number, i.e., 19, and randomized source networks.  

The last network recruited was the division-by-17 
network. The reason for stopping is that composite numbers 
less than or equal to 360 always have a prime factor less 
than or equal to 17. The lowest number that has no factor 
less than or equal to 17 is 361 = 19 x 19. In other words, the 
primality-testing problem could be solved without 
considering any divisors larger than 17.  

The knowledge-representation analysis shows how KBCC 
combined the six syntactic components (i.e., the source 
networks). First recall that the input to the target network 
was directly delivered to the source networks with weights 
of about 1 between corresponding units. With that in mind, 
let’s attempt to interpret the output weights, i.e., weights 
entering the output unit.  

The bias unit has a large negative influence on the output. 
Assume that the input is a prime number. In that case, all 
recruited source networks output a value close to -0.5 
because the input number is not divisible by any prime 
numbers between 3 and 17. Given these negative activation 
values on the outputs of the six recruited networks, because 
weights from these outputs to the output of the target 
network have large negative values, the overall effect of the 
recruited networks on the target network’s output is a large 

positive value (because the product of two negatives is 
positive). In addition, if the input is a prime number then its 
last digit is 1, coded here as 0.5. Because the weight from 
this last input to the output averaged 9.0, this further 
increases the output value. More precisely, the mean net 
input to the output unit (excluding the smallish direct input-
output connections from inputs 1-8) for a prime-number 
input can be calculated according to Equation 2 as (1 x -
20.3) + (0.5 x 9.0) + (-0.5 x -8.2) + (-0.5 x -7.7) + (-0.5 x -
7.0) + (-0.5 x -7.0) + (-0.5 x -6.7) + (-0.5 x -1.9) = 3.45. 
This net-input value is fed into the sigmoid output unit, 
according to Equation 1, yielding a value close to 0.5, thus, 
indicating that the input is a prime number.  

Notice that if any of the recruited networks indicate that 
the input is divisible by some number (meaning that the 
input number is composite), then at least one of the -0.5 
activation values in this computation becomes 0.5. Because 
all the weights from the source networks to the output of the 
target network are close to -7, the overall net input decreases 
by about 3.5 and becomes negative, making the output of 
the network negative, indicating that the input is a 
composite number.  

Precise activation and weight values do not matter much 
for this exposition because the weights were averaged over 
all networks and the small, direct input-output weights from 
inputs 1-8 were ignored. For present purposes, we are 
interested only in the average trend of network performance.  

There is an exception in the size of the recruit output 
weights: the weight connecting the output of the division-
by-17 network to the output of the target network is -1.9, 
which is not a value close to -7. This affects only one 
composite input number, 17 x 17 = 289. It is likely that 
KBCC networks handled this particular input of 289 by 
using the direct input-output weights that we excluded from 
the foregoing computation.  

This interpretation of the network structure is in accord 
with the idea that the internal representation of prime 
numbers in KBCC networks is computationally equivalent 
to the Boolean expression: ¬(n is divisible by 2) ∧ ¬(n is 
divisible by 3) ∧ … ∧ ¬(n is divisible by √n). Therefore 
KBCC represents the prime-number concept in a 
compositional way.  

Astute readers may have noticed one glaring omission 
from this analysis: KBCC did not ever recruit a division-by-
2 source network, even though 2 is a prime number that 
rules out more composites than any of the larger prime 
numbers. This does not imply that KBCC networks ignored 
divisibility of the input number by 2. Instead, KBCC 
networks noticed that if the last digit of a binary number is 0 
(coded here as -0.5), the number is an even number divisible 
by 2 and thus a composite number. Notice that unlike the 
small weights from inputs 1-8 to the output unit, this last 
input 9 has a relatively large weight of about 9 to the output 
unit. The computation of 9 x -0.5 = -4.5 would drive the net 
input to the output unit to be negative, thus allowing a 
conclusion that the input number is a composite.  

This provides a simple and ingenious solution of the sort 
often noted in humans who don’t need to explicitly divide 
by 2 to determine whether a decimal-coded number is odd 
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or even – they only need to check whether the last digit is 
odd or even. As another example, a number in decimal form 
is divisible by 5 if and only if the last decimal digit is either 
0 or 5. In this way, humans can easily tell whether a number 
is divisible by 5 without actually dividing that number by 5.  
The results show that KBCC networks achieved an effective 
compositional solution to prime-number testing.  

Even more convincing for compositionality would be a 
demonstration that KBCC networks could learn to do any of 
several tasks with the same component source networks. 
This would show that KBCC can build different 
compositions with the same components to solve different 
target tasks. We are currently investigating this possibility.  

It is important to consider whether the compositional 
solution achieved by the present KBCC networks is 
concatenative in the sense that the components of the 
composition are preserved. Or, is this compositional 
solution merely functional as in van Gelder’s (1990) 
characterization of Pollack’s (1990) recursive networks for 
encoding and decoding syntactic trees? Based on how the 
KBCC algorithm works, we would argue that KBCC’s 
solution does indeed implement a genuine concatenative 
compositionality because, when source networks are 
recruited, their internal structure and content are preserved 
intact. Only weights from the inputs of the target-network to 
the inputs of the recruited network and weights from the 
outputs of recruited networks are trained.  

Besides demonstrating that KBCC networks can learn a 
compositional procedure for prime-number testing, we 
wonder whether KBCC could serve to model the 
psychology of ordinary human performance on this 
problem. Apart from pedagogical recommendations to use 
the ancient sieve of Eratosthenes in teaching about prime 
numbers, there is currently little or no psychological 
analysis to rely on. However, it is interesting that 
Eratosthenes’ method does bear some interesting similarities 
to the solution learned by KBCC. Both methods order 
divisors from small to large and use only prime divisors 
below √n. We are currently studying whether people test 
prime numbers with these constraints.  

In conclusion, the KBCC learning algorithm creates a 
compositional representation of the prime number concept 
and the resulting network uses this representation to decide 
whether the input is a prime or composite number. Further, 
KBCC’s compositional representation results in faster 
learning and better generalization, using less hidden units 
than control networks without knowledge. The claim that 
neural networks cannot handle compositionality appears to 
be incorrect, at least when such networks are allowed to 
recruit previously-learned knowledge. Have we shown that 
neural networks can handle all of the compositional tasks 
that humans are capable of? Absolutely not, but success on 
even one compositional task shows the claim of 
impossibility to be incorrect and suggests that neural 
networks may be able to achieve other kinds of 
compositionality.  
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