
A Compositional Neural-network Solution to Prime-number Testing

László Egri (laszlo.egri@mail.mcgill.ca)
School of Computer Science, McGill University, 3480 University Street

Montreal, QC H3A 2B4 Canada

Thomas R. Shultz (thomas.shultz@mcgill.ca)
Department of Psychology and School of Computer Science, McGill University, 1205 Penfield Avenue

Montreal, QC H3A 1B1 Canada

Abstract

A long-standing difficulty for connectionism has been to
implement compositionality, the idea of building a knowledge
representation out of components such that the meaning arises
from the meanings of the individual components and how
they are combined. Here we show how a neural-learning
algorithm, knowledge-based cascade-correlation (KBCC),
creates a compositional representation of the prime-number
concept and uses this representation to decide whether its
input n is a prime number or not. KBCC conformed to a basic
prime-number testing algorithm by recruiting source networks
representing division by prime numbers in order from
smallest to largest prime divisor up to √n. KBCC learned how
to test prime numbers faster and generalized better to
untrained numbers than did similar knowledge-free neural
learners. The results demonstrate that neural networks can
learn to perform in a compositional manner and underscore
the importance of basing learning on existing knowledge.

Keywords: knowledge-based learning; compositionality;
KBCC; prime-number testing.

Introduction

Compositionality
Compositionality is the idea of building a problem
representation out of components such that the meaning
comes from the meanings of the components and the way
they are combined (Fodor & Pylyshyn, 1988). In a
compositional representation, there is a distinction between
structurally atomic and molecular representations.
Structurally molecular representations have syntactic
constituents that are themselves either structurally molecular
or are structurally atomic, and the semantic content of a
representation is a function of the semantic contents of its
syntactic parts, together with its constituent structure. For
example, consider the sentence The princess kissed the frog.
The meaning of this sentence can be computed from the
meanings (semantic content) of the units the, princess,
kissed and frog, and their positions in the sentence
(constituent structure). Changing the word order changes the
meaning, so that the sentence The frog kissed the princess
conveys a different idea.

Compositionality exists in a variety of psychological
functions, not only in language (Bregman, 1977). For
example, related arguments were made about similarity
comparisons sometimes requiring a focus on structural

relations between elements rather than mere attributes of the
elements being compared (Gentner & Markman, 1993).

A symbolic expression exhibits what is called
concatenative compositionality, which means that the
expression incorporates its constituents without changing
them, something that is supposed to be impossible for neural
networks (Fodor & Pylyshyn, 1988). In response to this
challenge, it has been argued that current neural networks
exhibit a unique functional form of compositionality that
may be able to model the compositional character of
cognition even if the constituents are altered when
composed into a complex expression (van Gelder, 1990).
Perhaps the original constituents could be retrieved from a
complex expression by natural connectionist means. For
example, an encoder network can learn to encode simple
syntactic trees on distributed hidden unit representations and
then decode them back into the same syntactic trees at the
outputs (Pollack, 1990). We argue later in this paper that a
newer connectionist algorithm implementing knowledge-
based learning can exhibit concatenative compositionality.

Prime numbers
One area in which to study the issue of compositionality is
that of testing for prime numbers. Is an integer n a prime
number or not? A prime number is a natural number that has
exactly two different divisors, 1 and itself. A number that
has more than two divisors is composite. The number 1 is
neither composite nor prime.

At first glance, the most intuitive way to test whether n is
a prime number is by checking whether n is divisible by any
numbers between 2 and n – 1. However, this test can be
much more efficient (Nagell, 1951). First, because n is
divisible by a number in the interval [2, n - 1] if and only if
it is divisible by a number in the interval [2, √n]1, it is
sufficient to check whether n is divisible by any number in
that interval [2, √n]. Second, if n is divisible by a composite
number in the interval [2, √n], then n is also divisible by all
prime factors of that composite number. Therefore, it is
sufficient to check whether n is divisible by any primes in
the interval [2, √n]. For example, 105 is a composite number
because it is divisible by 3, a prime number in the interval
[2, 10].

In short, to test whether a number n is a prime number,
one could divide n by all the primes in increasing order, up

1 Throughout this paper, √n denotes the integer part of a real
number, e.g., 2.3 is interpreted as 2.

1263

to the integer part of the square root of n, stopping when a
successful divisor is found. Thus, the statement that n is
prime can be represented in a compositional fashion by the
Boolean expression: ¬(n is divisible by 2) ∧ ¬(n is divisible
by 3) ∧ … ∧ ¬(n is divisible by √n). In this representation,
propositions of the form n is divisible by x correspond to
syntactic units. These syntactic units have their own
semantic content (i.e., a number n is divisible by number x).
The semantic content of the overall expression is a function
of the syntactic units, together with the constituent structure.
The constituent structure is expressed by the Boolean
operators not and and.

To demonstrate that constituent structure plays an
essential role in the semantic content of the overall
expression, consider a different Boolean expression: (n is
divisible by 2) ∧ ¬(n is divisible by 3) ∧ (n is divisible by 5)
∧ ¬(n is divisible by 7) …. The syntactic parts are exactly
the same as before but the constituent structure is different.
Accordingly, the meaning of the overall expression has
changed. Here the expression means that n is divisible by
prime numbers in odd positions, but is not divisible by
prime numbers in even positions in the list of prime
numbers.

So far the only psychological evidence on how ordinary
people test prime numbers comes from continued
educational use of the ancient sieve of Eratosthenes (circa
200 BC). In number theory, a sieve is a process of
successively eliminating members of a list according to a set
of rules such that only some members remain. With
Eratosthenes’ method, all integers from 1 to n are inscribed
on paper. Because 1 is not a prime, it is crossed out. The
smallest remaining number, 2 is a prime number. All other
multiples of 2 are crossed out because they are composites.
The next smallest remaining number 3 is the next prime
number. All other multiples of 3 are similarly crossed out
because they are composite numbers. This process is
repeated until the next divisor is greater than √n, by which
time all the composites have been crossed out. Numbers not
crossed out comprise all the primes from 2 to n. An
interesting feature of this method is that the smaller the
prime number, the more composite numbers it eliminates.

Cascade-correlation
Cascade-correlation (CC) is a neural-network learning
algorithm that constructs a feed-forward network as it learns
(Fahlman & Lebiere, 1990). A CC network initially has no
hidden units; there is only a randomly-determined direct
connection from each input to each output unit. Throughout
this paper, whenever a connection weight is randomized, it
is set to a random value in the range [-0.5, 0.5] in a uniform
distribution.

All the networks in this paper are built out of sigmoid
units with an offset of -0.5 to center activation around 0:

5.0
1

1 −
+

=
− jxj

e
y Equation 1

where xj is net input to unit j, e is the base of the natural
logarithm, and yj is resulting activation value of unit j.

Net input x to a unit j is computed as a sum of products of
sending-unit activations yi and connection weights wij:

∑=
i

iijj ywx Equation 2

CC learning begins with reducing network error by
training weights feeding the output layer. Training these
output weights is the so-called output phase of CC. Any
single-layer network learning algorithm could be used to
train output weights but the usual choice is the Quickprop
algorithm (Fahlman, 1988). Quickprop works like ordinary
back-propagation learning except that it employs the second
(curvature), as well as the first (slope), derivative of the
error surface to adjust connection weights, thus enabling it
to reduce error more aggressively (Shultz, 2003). In
Quickprop, weight change is proportional to the negative of
slope (the rate at which error changes with a change in
weight) divided by curvature (the rate at which slope
changes with a change in weight).

When output training ceases to reduce error or if error is
still too high after a specified number of training cycles
(epochs), training shifts to input phase. In input phase, a
single new hidden unit is trained and added to the network.
After the new unit is added, its input weights are frozen and
a new output phase begins. This two-phase cycle continues
until error is reduced to a satisfactory level, meaning that all
output activations are within a specified range of their target
values, known as the score-threshold.

In input phase, candidate hidden units receiving incoming
connections from input units and from pre-existing hidden
units are trained. In this phase, candidate output is not
connected to any other unit. The incoming weights of the
candidate units are initialized with small random weights.
Next, the set of training examples is cycled through (a single
epoch) and the weights feeding the candidates are adjusted
with Quickprop in order to increase S, the magnitude of a
modified correlation between a candidate unit’s activation
and network error observed at the output units. Input phase
ends when S values cease to improve. At this point, the
candidate unit with the highest absolute correlation is
connected to all the output units with small random weights
and a new output phase begins. Usually eight candidates are
trained in parallel, the best one is installed, and the rest of
the candidates are discarded.

The original version of CC is the one just described and it
is sometimes called deep CC because each new hidden unit
is installed on its own separate layer, creating a fairly deep
network topology. However, the version used here is
sibling-descendant CC (SDCC). In SDCC, two types of
candidate units are trained. Four of the eight candidate units
are trained as descendant units like in deep CC (Baluja &
Fahlman, 1994). The other four candidate units are trained
as sibling units without receiving any connections from the
previous layer. Thus, when a sibling unit is installed,
network depth does not increase.

Sibling and descendant candidate hidden units compete
with each other for being recruited. The S values of
descendant candidates are typically multiplied by 0.8 to
avoid overly-deep networks resulting from a natural bias to
recruit the more complex descendant candidates, having
extra weights from the current highest layer of hidden units.

1264

This 0.8 multiplier has been observed to reduce network
depth without harming network generalization (Baluja &
Fahlman, 1994).

A resulting SDCC network then has multiple layers with
one or more units in each hidden layer. SDCC networks
have been found to perform similarly to CC networks in
psychology simulations but with fewer layers and more
interesting varieties of network topology (Shultz, 2006).

Knowledge-based cascade-correlation
Knowledge-based cascade-correlation (KBCC) is a natural
extension of CC in which the target network can recruit not
only single hidden units, but also previously-learned
networks with possibly multiple inputs and outputs (Shultz
& Rivest, 2001). We refer to previously-learned networks in
the candidate pool as source networks and to networks
created by KBCC as target networks.

Source networks can be installed indirectly or directly.
When they are installed indirectly, each input of the source
network has an incoming connection from all inputs of the
target network, from all outputs of previously installed
unit(s) and network(s), and from the bias unit. If a hidden
unit or network was installed as a sibling, there is no
connection from the current highest layer of hidden units.

When source networks are installed directly, weights
connecting the corresponding inputs of the target network
and the source network are initialized with weights of 1.0
and the other connection weights are initialized with
weights of 0.0. This direct connection scheme implies that
the number of inputs of the target and source networks must
be the same. Direct connection enables the use of relevant
knowledge without much additional training.

In general, all networks have a bias unit sending a
trainable connection to every other unit and recruited
network except for the input units. The bias unit has a
constant activation value of 1.0. All connection weights are
initialized with random values.

An example KBCC network from the present project is
portrayed in Figure 1. This network has a bias unit, nine
input units, and one output unit. It recruited six source
networks, installing all of them as siblings on the same
layer. Further details about KBCC can be found elsewhere
(Shultz & Rivest, 2001).

A major advantage of KBCC over previous knowledge-
based learning algorithms is that, with indirect connections,
KBCC can recruit any function that predicts network error,
without regard to matching the number and function of input
units between the source and target networks.

As noted, a long-standing difficulty for connectionism has
been to implement compositionality. A goal of this paper is
to demonstrate that KBCC creates a compositional
representation of the prime-number concept and uses this
representation to decide whether its input is a prime number
or not. We hypothesized that learning a compositional
representation is faster, results in better generalization to
input numbers not used in training, and requires less
recruitment relative to knowledge-free SDCC learning.

Some evidence already exists for compositionality in
KBCC solutions. In a task requiring a network to distinguish
points inside a two-dimensional shape from points outside

the shape, KBCC recruited source networks representing a
vertical rectangle and a horizontal rectangle to learn a target
cross shape (Shultz & Rivest, 2001). Also KBCC recruited
source knowledge of small checkerboard shapes to learn
target patterns of larger checkerboard shapes and source
knowledge of small parity problems to learn target problems
of larger parity problems (Rivest & Shultz, 2004).
Knowledge-based learning was considerably faster than
learning without knowledge, and faster with relevant than
with irrelevant knowledge.

Method

Primality testing
Given an input number in the range [21, 360], a target
network had to indicate whether the input was prime or
composite. There were nine input units because the largest
number 360 requires nine digits in binary format. There was
one binary output unit. A target output value of 0.5
indicated that the input was prime, and -0.5 indicated that
the input was composite. The score-threshold was 0.4.
Thirty-four randomly-chosen problem instances not used in
training (10% of the total) were used to test generalization
ability of the networks.

Source networks
Nineteen SDCC source networks were trained in the
following way. The input to each source network was a
number encoded in binary in the range [2, 360]. The binary
digit 1 was encoded as 0.5, and the binary digit 0 as -0.5.
Nine input units were needed because the largest number
360 has nine digits in binary format. Each source network
was trained to divide its input by a specific number. There
was a network to divide by 2, a network to divide by 3, and
so on up to 20. Each source network had one output unit.
The target output was 0.5 if the input was divisible by the
number the given network was responsible for and
otherwise the target output was -0.5. These source networks
were trained with a relatively low score-threshold of 0.01 to
ensure that they provided a clear output. We refer to a
source network that was trained to divide by number x as a
division-by-x network.

Conditions
There was an experimental and two control conditions. In
the experimental condition, 20 sibling-descendant KBCC
(SD-KBCC) target networks were trained on primality
testing. The set of candidate units and networks SD-KBCC
could recruit from is called the candidate pool. The
candidate pool here contained the 19 divisor (source)
networks described earlier. Divisor networks could be
connected only directly, either as a sibling or descendant of
the current highest layer. The candidate pool also contained
four sigmoid units that likewise could be installed as a
sibling and four that could be installed as a descendant.

There were also 32 randomized networks in the candidate
pool that were created in the following way. Four trained
divisor networks were chosen randomly. The weights in the

1265

networks were reset to random values, keeping only the
structures of the divisor networks. In effect, we erased the
memory in the source networks, but left all the structure
intact. For each randomized network, four copies were
created and put in the candidate pool. The first copy was
directly connected and the remaining copies were indirectly
connected. Each copy could be installed as a sibling or a
descendant. The idea of including these randomized
networks in the candidate pool was to control for
complexity of at least some of the recruits. It might be that
KBCC would recruit the most complex source, regardless of
whether it contained relevant knowledge. Recruiting trained
sources over randomized sources would rule out a mere
preference for complexity and demonstrate a preference for
relevant knowledge.

In one control condition, 20 SDCC networks were trained
on the primality-testing problem. The candidate pool
contained four sigmoid units that could be installed as a
sibling and four sigmoid units that could be installed as a
descendant. Comparison with KBCC networks provided an
assessment of the impact of prior knowledge, in this case
knowledge of divisibility with divisors between 2 and 20.

In another control condition, randomized KBCC, 20
KBCC networks were trained on the primality-testing
problem. Their candidate pool was exactly the same as that
in the KBCC condition except that connection weights in
the 19 divisor networks were reset to random values.
Comparison with ordinary KBCC provided another
assessment of the impact of prior knowledge but with an
additional control for complexity of the recruits. In this
condition, there were networks in the candidate pool that
were just as complex as the candidates in the KBCC
condition, but they contained no knowledge of divisibility
because their connection weights were randomized.

Results

Performance comparisons
Numbers of epochs to learn, recruits, and layers, as well as
percent success on generalization were each subjected to a
factorial ANOVA with condition as the single factor.
Results are presented in Table 1 in terms of F ratios and
comparison of means using Tukey’s HSD test at p < .05.
KBCC networks learned in fewer epochs than did
randomized KBCC networks, which in turn learned faster
than knowledge-free SDCC networks. The same pattern
held for number of recruits during learning. KBCC and
randomized KBCC created shallower networks than did
SDCC. Generalization to untrained numbers was better for
KBCC than for the other two network types.

Table 1: Comparison of performance means.
 Condition means F(2, 57)
Variable KBCC Random SDCC
Epochs to learn 335 < 1015 < 1122 347
Recruits 6.00 < 8.60 < 9.95 43.5
Network layers 1.00 ≈ 1.25 < 2.35 26.4
Generalization 98.7 > 75.1 ≈ 73.1 112

Knowledge-representation analysis
KBCC networks were subjected to further analysis to
discover how they managed their successful performance.
Almost all (17 / 20) KBCC networks had the same structure
and recruited their sources in the same order. Divisor source
networks were recruited in the following order: division-by-
3, division-by-5, … , division-by-17 (all primes from 3 to
17). There were three exceptions and in those networks,
only the last two recruitments differed from this pattern.

Weights feeding the recruited source networks were
extracted from the 17 typical KBCC networks. For each
source network, weights connecting the input of the target
network to the corresponding input of the source network
had values close to 1, and all other weights feeding the
inputs of the source network had values close to 0.

Weights going to the output units (output weights) of the
target network were also extracted from the 17 typical
KBCC networks. There was one weight from the bias unit,
nine weights from the input units, and six weights from the
recruited sources. Because weight patterns of the networks
were very similar, output weights were averaged over the 17
typical networks. The mean output weights from the
recruited source networks, bias unit, and last input unit are
shown in Figure 1.

Figure 1: KBCC network with mean output weights from
recruited source networks, bias unit, and input 9.

We found that KBCC networks could also be trained and

tested on the primality of the same input numbers used in
their source networks. If the KBCC networks were trained
on numbers in the interval [2, 360], they took longer to learn
(M = 437 epochs) and recruited more divisor networks (M =
8.05), but they learned their training patterns perfectly and
generalized correctly to 98.2% of their test patterns. The
order of their divisor-network recruits was a bit more
variable, but still correlated highly with size of divisor (M =
.86). All but 3 of these 20 correlations were significantly
positive at p < .05.

Discussion
Results showed that KBCC networks learned faster and with
fewer recruits than did either randomized KBCC networks
or knowledge-free SDCC networks. This confirms previous

3 5 7 11 13 17

-8.2 -7.7 -7.0 -7.0 -6.7 -1.9

Bias 1 2 3 4 5 6 7 8 9 Inputs

Recruits (divide by)

Output

9.0 -20.3

Weights from recruits

1266

research showing the superior learning speed of knowledge-
based networks (Shultz & Rivest, 2001), and shows that the
key advantage of KBCC lies with its knowledge and not the
mere complexity of its topology. Randomized KBCC
networks of equal complexity as KBCC networks learned
faster and with fewer recruits than did SDCC networks,
showing that complexity alone has some beneficial effect.

Generalization, often considered to be an essential
characteristic of successful learning, was nearly perfect in
KBCC networks and considerably better than in either
randomized KBCC or SDCC networks. This indicates that
knowledge-based learning in KBCC differs not only in
speed and efficiency but also in quality of learning.

At first glance, it may seem that randomized-KBCC and
SDCC networks generalized rather well on their test
problems at 75% and 73% success, respectively. However,
because only 19% of the integers in the range [21, 360] are
prime numbers, a system can do well (81% success) by
guessing that every integer in that range is composite. Thus,
learning to test for prime numbers appears to be sufficiently
challenging that knowledge-based learning is required for
correct generalization. This is the first task we have studied
in which CC or SDCC networks could not eventually catch
up to the learning quality of KBCC networks. In that sense,
the present results underscore the importance of knowledge-
based learning. It may be that some tasks can only be
learned by building on existing knowledge.

It is interesting that KBCC networks recruited only those
six source networks that were trained to divide by the prime
numbers from 3 to 17 (3, 5, 7, 11, 13, and 17) and recruited
them in that precise order from smallest to largest. This is in
accord with the basic primality-testing method discussed in
the introduction. KBCC target networks avoided recruiting
division-by-composites networks, any networks with
divisors greater than √n, even if the divisor was a prime
number, i.e., 19, and randomized source networks.

The last network recruited was the division-by-17
network. The reason for stopping is that composite numbers
less than or equal to 360 always have a prime factor less
than or equal to 17. The lowest number that has no factor
less than or equal to 17 is 361 = 19 x 19. In other words, the
primality-testing problem could be solved without
considering any divisors larger than 17.

The knowledge-representation analysis shows how KBCC
combined the six syntactic components (i.e., the source
networks). First recall that the input to the target network
was directly delivered to the source networks with weights
of about 1 between corresponding units. With that in mind,
let’s attempt to interpret the output weights, i.e., weights
entering the output unit.

The bias unit has a large negative influence on the output.
Assume that the input is a prime number. In that case, all
recruited source networks output a value close to -0.5
because the input number is not divisible by any prime
numbers between 3 and 17. Given these negative activation
values on the outputs of the six recruited networks, because
weights from these outputs to the output of the target
network have large negative values, the overall effect of the
recruited networks on the target network’s output is a large

positive value (because the product of two negatives is
positive). In addition, if the input is a prime number then its
last digit is 1, coded here as 0.5. Because the weight from
this last input to the output averaged 9.0, this further
increases the output value. More precisely, the mean net
input to the output unit (excluding the smallish direct input-
output connections from inputs 1-8) for a prime-number
input can be calculated according to Equation 2 as (1 x -
20.3) + (0.5 x 9.0) + (-0.5 x -8.2) + (-0.5 x -7.7) + (-0.5 x -
7.0) + (-0.5 x -7.0) + (-0.5 x -6.7) + (-0.5 x -1.9) = 3.45.
This net-input value is fed into the sigmoid output unit,
according to Equation 1, yielding a value close to 0.5, thus,
indicating that the input is a prime number.

Notice that if any of the recruited networks indicate that
the input is divisible by some number (meaning that the
input number is composite), then at least one of the -0.5
activation values in this computation becomes 0.5. Because
all the weights from the source networks to the output of the
target network are close to -7, the overall net input decreases
by about 3.5 and becomes negative, making the output of
the network negative, indicating that the input is a
composite number.

Precise activation and weight values do not matter much
for this exposition because the weights were averaged over
all networks and the small, direct input-output weights from
inputs 1-8 were ignored. For present purposes, we are
interested only in the average trend of network performance.

There is an exception in the size of the recruit output
weights: the weight connecting the output of the division-
by-17 network to the output of the target network is -1.9,
which is not a value close to -7. This affects only one
composite input number, 17 x 17 = 289. It is likely that
KBCC networks handled this particular input of 289 by
using the direct input-output weights that we excluded from
the foregoing computation.

This interpretation of the network structure is in accord
with the idea that the internal representation of prime
numbers in KBCC networks is computationally equivalent
to the Boolean expression: ¬(n is divisible by 2) ∧ ¬(n is
divisible by 3) ∧ … ∧ ¬(n is divisible by √n). Therefore
KBCC represents the prime-number concept in a
compositional way.

Astute readers may have noticed one glaring omission
from this analysis: KBCC did not ever recruit a division-by-
2 source network, even though 2 is a prime number that
rules out more composites than any of the larger prime
numbers. This does not imply that KBCC networks ignored
divisibility of the input number by 2. Instead, KBCC
networks noticed that if the last digit of a binary number is 0
(coded here as -0.5), the number is an even number divisible
by 2 and thus a composite number. Notice that unlike the
small weights from inputs 1-8 to the output unit, this last
input 9 has a relatively large weight of about 9 to the output
unit. The computation of 9 x -0.5 = -4.5 would drive the net
input to the output unit to be negative, thus allowing a
conclusion that the input number is a composite.

This provides a simple and ingenious solution of the sort
often noted in humans who don’t need to explicitly divide
by 2 to determine whether a decimal-coded number is odd

1267

or even – they only need to check whether the last digit is
odd or even. As another example, a number in decimal form
is divisible by 5 if and only if the last decimal digit is either
0 or 5. In this way, humans can easily tell whether a number
is divisible by 5 without actually dividing that number by 5.
The results show that KBCC networks achieved an effective
compositional solution to prime-number testing.

Even more convincing for compositionality would be a
demonstration that KBCC networks could learn to do any of
several tasks with the same component source networks.
This would show that KBCC can build different
compositions with the same components to solve different
target tasks. We are currently investigating this possibility.

It is important to consider whether the compositional
solution achieved by the present KBCC networks is
concatenative in the sense that the components of the
composition are preserved. Or, is this compositional
solution merely functional as in van Gelder’s (1990)
characterization of Pollack’s (1990) recursive networks for
encoding and decoding syntactic trees? Based on how the
KBCC algorithm works, we would argue that KBCC’s
solution does indeed implement a genuine concatenative
compositionality because, when source networks are
recruited, their internal structure and content are preserved
intact. Only weights from the inputs of the target-network to
the inputs of the recruited network and weights from the
outputs of recruited networks are trained.

Besides demonstrating that KBCC networks can learn a
compositional procedure for prime-number testing, we
wonder whether KBCC could serve to model the
psychology of ordinary human performance on this
problem. Apart from pedagogical recommendations to use
the ancient sieve of Eratosthenes in teaching about prime
numbers, there is currently little or no psychological
analysis to rely on. However, it is interesting that
Eratosthenes’ method does bear some interesting similarities
to the solution learned by KBCC. Both methods order
divisors from small to large and use only prime divisors
below √n. We are currently studying whether people test
prime numbers with these constraints.

In conclusion, the KBCC learning algorithm creates a
compositional representation of the prime number concept
and the resulting network uses this representation to decide
whether the input is a prime or composite number. Further,
KBCC’s compositional representation results in faster
learning and better generalization, using less hidden units
than control networks without knowledge. The claim that
neural networks cannot handle compositionality appears to
be incorrect, at least when such networks are allowed to
recruit previously-learned knowledge. Have we shown that
neural networks can handle all of the compositional tasks
that humans are capable of? Absolutely not, but success on
even one compositional task shows the claim of
impossibility to be incorrect and suggests that neural
networks may be able to achieve other kinds of
compositionality.

Acknowledgments
This research was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada to
the second author. We are grateful to Yoshio Takane, J-P.
Thivierge, and Frédéric Dandurand for helpful comments.

References
Baluja, S., & Fahlman, S. (1994). Reducing network depth

in the cascade-correlation learning architecture (Tech.
Rep. No. CMU-CS-94-209). Pittsburgh, PA: Carnegie
Mellon University, School of Computer Science.

Bregman, A. S. (1977). Perception and behavior as
compositions of ideals. Cognitive Psychology, 9, 250-292.

Fahlman, S. E. (1988). Faster-learning variations on back-
propagation. Proceedings of the 1988 Connectionist
Models Summer School. Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-
correlation learning architecture. In D. S. Touretzky (Ed.),
Advances in Neural Information Processing Systems 2.
Los Altos, CA: Morgan Kaufmann.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionsism
and cognitive architecture: A critical analysis. Cognition
28, 3-71.

Gentner, D., & Markman, A. B. (1993). Analogy –
Watershed or Waterloo? Structural alignment and the
development of connectionist models of cognition. In S. J.
Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in
neural information processing systems, 5. San Mateo,
CA: Kaufmann.

Nagell, T. (1951). Introduction to number theory. New
York: Wiley.

Pinker, S. (1997). How the mind works. New York: Norton.
Pollack, J. (1990). Recursive distributed representations.

Artificial Intelligence, 46, 77-105.
Rivest, F., & Shultz, T. R. (2004). Compositionality in a

knowledge-based constructive learner. Papers from the
2004 AAAI Fall Symposium, Technical Report FS-04-03,
pp. 54-58. AAAI Press: Menlo Park, CA.

Shultz, T. R. (2003). Computational developmental
psychology. Cambridge, MA: MIT Press.

Shultz, T. R. (2006). Constructive learning in the modeling
of psychological development. In Y. Munakata & M. H.
Johnson (Eds.), Processes of change in brain and
cognitive development: Attention and performance XXI.
Oxford: Oxford University Press.

Shultz, T. R., & Rivest, F. (2001). Knowledge-based
cascade-correlation: Using knowledge to speed learning.
Connection Science, 13, 43-72.

van Gelder, T. (1990). Compositionality: A connectionist
variation on a classical theme. Cognitive Science, 14, 355-
364.

1268

