Automating Text Propositionalization: An Assessment of *AutoProp*

Stephen W. Briner, Philip M. McCarthy, and Danielle S. McNamara
Department of Psychology
University of Memphis
Memphis, TN 38152

{sbriner, pmccarthy, d.mcnamara} @mail.psyc.memphis.edu

Propositions are psychological representations of textual units that capture the overall gist of a sentence or clause (Kintsch, 1988; Kintsch, 1998). Such is the complexity of constructing these propositions that no computational system has yet been able to match human hand-coded examples.

The recent advent of major computational projects such as iSTART (McNamara, Levinstein, & Boonthum, 2004) and Coh-Metrix (Graesser et al., 2004) has highlighted the need for an automated tool capable of accurately converting thousands of sentences into propositional units. In this study, we introduce a working prototype of a propositionalization tool, *AutoProp*, and assess its automated output of propositions against a corpus of published hand-coded propositions.

AutoProp, written in Visual Basic, first directs text through the Charniak parser (Charniak, 2000) before allocating the parsed data into propositional units. A final proposition is displayed on *AutoProp*’s interface, and can be saved to a file or printed upon request. As an example, the sentence *The hemoglobin carries the oxygen* is represented by Kintsch (1998) as CARRY[HEMOGLOBIN,OXYGEN]. *AutoProp* separates the sentence into primary elements (pe) and sub-propositional elements (sub prop) rendering the Kintsch sentence above as:

```
carries (the {pe} hemoglobin, {pe} oxygen)
sub prop: the (({pe} hemoglobin)
sub prop: ({pe} oxygen)
```

For an initial test of the tool’s effectiveness, we constructed a corpus of 29 previously published sentences taken from Kintsch (1998). These sentences were processed through *AutoProp* to derive the tool’s propositional representations.

The types of contrasts (i.e., output differences) between the tool and the Kintsch model were categorized *a priori* as follows:

- **Type 1**: Superficial, easily correctable differences.
- **Type 2**: Easily correctable contrasts
- **Type 3**: Systematic contrasts caused by parser limitations
- **Type 4**: Systematic, but correctable contrasts
- **Type 5**: Difficult to correct systematic contrasts

Based on these criteria, we analyzed contrasts between the propositional tool and the hand-coded Kintsch textbase.

Analysis and Discussion

While all of the *AutoProp* propositions recorded Type 1 contrasts, the results of the analysis suggested that major differences between the Kintsch and *AutoProp* generated propositions were minimal. Our results offered only one propositional contrast caused by parser limitations (Type 3), and eleven further correctable Type 4 contrasts. There were no Type 2 or Type 5 contrasts. Thus, *AutoProp* was highly successful. The success of these initial results, however, must be tempered by the fact that our corpus of propositions stem from sentences no longer than two clauses. Subsequent *AutoProp* algorithms must address far more complex multi-clausal sentence constructions.

In addition to generating textbase propositions, future *AutoProp* research will also develop modules for comparing these propositions to recall and self explanation propositions. Thus, *AutoProp* stands to contribute to the field by substantially reducing preparation time and substantially increasing the accuracy and reliability of scores generated from recall data.

This research initiates a response to a growing need for an automated propositionalization tool. The current version of *AutoProp* is the first step toward building a tool capable of converting a wide range of sentence types into propositional units, as well as comparing and scoring textbase propositions from recall and self-explanation examples.

Acknowledgments

This research was supported by the Institute for Education Sciences (IES R3056020018-02).

References

