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Abstract

A new model of early language acquisition is introduced.  The
model  demonstrates  the  staged  emergence  of  lexical  and
syntactic acquisition.   For  a period,  no linguistic activity is
present.  The emergence of first words signals the onset of the
holophrastic stage that continues to mature without syntactic
activity.  Syntactic awareness eventually emerges as the result
of multiple lexically-based insights.  No mechanistic triggers
are employed throughout development.

Keywords: Computational modeling; Emergence of Syntax;
Item-based Learning; Language Acquisition.

Introduction
Children acquire language in stages, first learning words and
later  showing  sensitivity  to  their  syntactic  properties.
Processes  that  demonstrate  distinct  behaviors  at  different
stages of development are difficult to model within a unified
system.  As a result, lexical and syntactic processes are often
modeled independently from one another.  Bridging the gap
between  these  models  will  increase  understanding  of  the
behavioral shift that ushers in syntactic awareness.

Background

Modeling Word-to-meaning Mappings
Children  learn  the  meanings of  a  small  number  of  words
early in linguistic development.  These first words are often
non-formulaic  (Wray,  2002).   A  non-formulaic  word
expresses  a  word-to-meaning  relationship  that  is  not  a
function of the word's internal parts.

Siskind  (1996)  investigates  word-to-meaning  mappings
using cross-situational  analysis.   Cross-situational  analysis
takes  advantage  of  word-meaning  co-occurrences  to
establish relationships.  His simulations show considerable
success,  offering a robust solution to the problem under a
variety  of  circumstances.   Steels  (2001)  considers  the
problem of  establishing  such  mappings  through  language
games.  Treating language as a complex adaptive system, he
shows that social pressures to communicate, through games,
encourage  the  development  of  a  self-organized  lexicon.
Lexical acquisition is also studied within a developmental
framework.   Regier  (2005)  shows that  interesting  lexical
phenomena, such as fast-mapping, can arise without internal
mechanistic  changes.   Attentional  learning  plays  an
important role in language acquisition.

Modeling the Emergence of Syntax
All  natural  languages  employ  syntax.   Syntax  allows
individuals to both understand and produce novel utterances.
Unlike  non-formulaic  language,  syntactically  produced
utterances are a function of their internal parts.

Elman (1993)  finds  that  simple  and  complex  linguistic
structures can be learned by a neural network, but only if the
former  are  acquired  before  the  latter.   To  ensure  simple
structures  are  learned  first,  the  neural  network's  memory
length is initially small, and increased during training.  This
'maturational'  growth  allows  both  types  to  be  acquired
without  staged  input.   Dominey  and  Boucher  (2005)
investigate  developmental  phenomena  within  a  grounded
robot.  A form of syntactic bootstrapping arises as grounded
<sentence, event> pairs are learned.  The model, however,
employs  a  manual  trigger  that  activates  the  syntactic
component, an inadequate explanation for the emergence of
syntax.   Kirby (2001) considers language transmission from
generation  to  generation  through  the  Iterated  Learning
Model.  He demonstrates that transmission bottlenecks, that
determine  the  amount  of  linguistic  exposure  a  learner
receives,  have  an  important  effect  on  the  emergence  of
syntax.  The bottleneck can be neither too narrow nor too
wide for syntactic structures to be derived.

Bridging the Gap between Words and Syntax
None of  these models show the  developmental  shift from
lexical  to  syntactic  awareness  reflected  in  child  language
development.   Jack, Reed and Waller  (2004) consider the
transition from the one-word stage to the two-word stage.  A
model  is  trained  on  <string,  meaning>  pairs,  testing
interpretation  of  strings  at  each  training epoch.   In  early
training,  a  preference  for  non-formulaic  (lexical)
interpretation  emerges.   As  training  continues,  this
preference  fades,  giving  way  to  formulaic  (syntactic)
interpretations.   The  behavioral  change  is  an  emergent
property of the training process and not artificially triggered.
Although a developmental shift is witnessed it appears very
early in the model and the purely lexical period is very short,
unreflective of natural child language development.

Modeling the Developmental Shift
Children do not understand syntactically complex utterances
from birth.  First words, produced at around 10-months-old
(Bates  &  Goodman,  1999),  are  non-formulaic,  with  no
indication  of  syntactic  properties.   By around 18-months-
old,  syntactic  awareness  emerges  (MacWhinney & Bates,
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1989).  An accurate model of language acquisition should
reflect  the development from the holophrastic stage (non-
formulaic) to the early multi-word stage (formulaic).

The Holophrastic Stage Specification
During the holophrastic stage, the model shows no syntactic
awareness.  All successful string-to-meaning mappings are
performed  through  non-formulaic  interpretation  i.e.  given
the  string “all  gone”,  the  appropriate  meaning is  mapped
directly without reducing the string to its  individual parts,
“all” and “gone”.

The Early Multi-word Stage Specification
During  the  early  multi-word  stage,  the  model  shows
syntactic  awareness.   Some  successful  string-to-meaning
mappings are performed through formulaic interpretation i.e.
given the string “all  gone”, it  is  reduced to  its  individual
parts, “all” and “gone”.  Non-formulaic language persists.

A  symbolic  model  is  implemented  to  investigate  this
developmental shift.  The remainder of the paper describes
this model and discusses its behavior.

The Model

Training Data
The Miniature Language Acquisition framework (Feldman,
Lakoff,  Stolcke,  &  Weber,  1990)  allows  language
acquisition  to  be  studied  by  coupling  visual  events  with
linguistic  descriptions.   Under  this  framework,  a  scene
building game is played.  An object appears in a scene and is
described.   The  object  always  appears  next  to  another
object.  These <event, description> pairs are entered into the
model as training data.

Objects  are  expressed  by  a  set  of  feature  tuples.   A
feature  tuple  expresses  a  value  and  an  object  identifier.
Values  are  derived  from simulated  visual  data,  consistent
with  computer  vision  technology  capabilities.  Object
identifiers uniquely identify the object that the value belongs
to.  Since there are always two objects in an event, they are
numbered 1 and 2.  1 is the first object in the scene while 2
is the second.  Objects vary in shape, color  and position.
The object {<red, (1)>, <circle, (1)>} reflects that the first
object in the scene is a red circle.  Object identification is
present in infants (Kellman, Gleitman, & Spelke, 1987).

Events are expressed by a set of feature tuples comprising
two objects and the relationship between them.  The event
{<red,  (1)>,  <circle,  (1)>,  <pink,  (2)>,  <cross,  (2)>,
<above,  (0)>,  <right,  (0)>}  reflects  that  a  pink  cross
appeared  to  the  upper  right  of  a  red  circle.   Relative
positions  are  expressed  as  binary  relationships  along
horizontal  and  vertical  planes,  as  suggested  by  infant
interpretations of spatial locations (Quinn, 2003).

Descriptions are syllable-segmented strings.  Descriptions
are not word-segmented as fluent speech contains no known
acoustic analog of the blank spaces in text (Brent & Siskind,
2001).  A syllabic base is implemented as infants are likely
to represent sound based on a syllable covariant (Dehaene-
Lambertz  &  Houston,  1998;  Mehler,  Dupoux,  Nazzi,  &
Dehaene-Lambertz, 1996).  Word spellings are retained for

readability unless words share syllables e.g.  low occurs in
lower and yellow, producing “low er” and “ ye low”.

Training data are randomly generated.  Objects can have
one of 10 colors and 10 shapes, allowing 100 objects.  An
object can appear in one of eight relative locations to one
another.  This allows a total of 80,000 unique events (100
objects  x  eight  relative  locations  x  100  objects).
Descriptions are generated through a grammar specification
(Table  1).   The  grammar  is  instantiated  when producing
training data alone and is not accessible by the model during
learning.  The grammar is supplied for reader's convenience.

Table 1:  The grammar specification for event
descriptions.

S = NP1 REL NP2 NP1 = a COLOR SHAPE
NP2 = the COLOR SHAPE REL = REL1 | REL2
REL1 = a bove | be low | to the REL4 REL2 = REL3 REL4
REL3 = to the u pper | to the low er REL4 = right of | left of
COLOR = red | blue | pink | green | white | black | ye low | gray | lime | pur
ple
SHAPE = cir cle | dia mond | heart | cross | tri ang gle | star | rec tang gle |
square | pen ta gon | hex a gon

Overview
The  model  is  designed  to  investigate  the  appearance  of
lexical  and  syntactic  sensitivity.   It  is  implemented  as  a
symbolic  system.   A  set  of  training  data  (<event,
description> pairs) are randomly generated and entered into
the model.  Each pair is analyzed by the Lexical Analysis
Unit.  Lexical  items are determined from data regularities
through cross-situational  analysis  (Siskind,  1996).   These
items  are  processed  by  the  Syntactic  Analysis  Unit  that
derives  syntactic  rules  and  phrasal  categories.   Syntactic
rules specify the interaction between phrasal categories.

The Lexical Analysis Unit
Training  data  are  entered  into  the  model  in  the  form of
<event, description> pairs.  Lexical items are derived based
on these data.  Given that strings are syllable-based, word
boundaries are not provided and must be derived.  In some
cases, these word boundaries overlap, increasing ambiguity.
Meaning  'boundaries'  must  also  be  derived  since  not  all
feature  tuple  sets  are  singletons  e.g.  below can  be
represented as {<below, (0)>, <even_horizontal, (0)>}.  The
model must further derive how these strings and meanings
are related to one another.

The  learning  algorithm  is  best  described  by  way  of
example.  The model contains pair (1).  On the entry of pair
(2),  the  model  checks  if  the  pair  has  been  encountered
before.  If so, then a count is kept of the number of times
that it has appeared and lexical analysis ends.  If not, then a
form of  cross-situational  analysis begins to  identify event
and string equalities.  It is assumed that words will co-occur
more often with their  referents than with other  meanings.
Regularities  are  extracted  across  events  and  descriptions
individually before recombining the results.
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1. <{<red,  (1)>,  <circle,  (1)>,  <pink,  (2)>,  <cross,  (2)>,
<above, (0)>, <right, (0)>},
“a pink cross to the u pper right of the red cir cle”>

2. <{<green, (1)>, <cir cle, (1)>, <red, (2)>, <diamond, (2)
>, <even_vertical, (0)>, <right, (0)>},
“a red dia mond to the right of the green cir cle”>

Event  regularities  are  derived  based  on  feature  tuple
equality.  Feature tuple comparisons are value sensitive and
identifier insensitive.  That is, the feature tuple <red, (1)> is
equal to any feature tuple with the value  red regardless of
identifier  value.   All feature tuple equalities are  extracted
over the two events, producing (3) and (4).

3. {<red, (1)>, <circle, (1)>, <right, (0)>}
4. {<cir cle, (1)>, <red, (2)>, <right, (0)>}

Description  comparisons  are  syllable  form  sensitive
reflecting infants' sensitivity to syllabic patterns (Houston,
Santelmann,  & Jusczyk, 2004).   Descriptions are  aligned,
(5) and (6),  and syllable lists are extracted,  producing (7)
and (8).

5. “a pink cross to the u pper right of the red cir cle”
6. “a red dia mond to the right of the green cir cle”

7. “a”, “to the”, “right of the”, “red”, and “cir cle”
8. “a”, “red”, “to the”, “right of the”, and “cir cle”

Event  and  description  regularities  are  recombined
producing <{feature tuple}, string> pairs.  All combinations
of regularities from the first event and the first description
produce some of co-occurrences (e.g. <{<red, (1)>, <circle,
(1)>, <right,  (0)>}, “a”>), while second event and second
description combinations produce the remainder.  Each pair
is re-entered into the model and activates the same process
as the original training data.

Often,  more than one {feature tuple} accompanies each
string after learning.  To avoid ambiguity, each string must
be  represented  by  only  one  {feature  tuple}.   Children
actively  avoid  synonymy  during  language  learning,
following  a  principle  of  mutual  exclusivity  (Markman  &
Wachtel, 1988).  Given the list of {feature tuple}s to which
a  string  is  related,  the  {feature  tuple}  with  the  closest
distribution to the string is selected.  In some cases, a string
may be represented by two {feature tuple}s that are equal.
For  example,  <{<red,  (1)>},  “red”>  means  that  “red”  is
associated with the redness of object 1 and <{<red, (2)>},
“red”> means that “red” is associated with the redness of
object 2.  These relationships are combined and written as <
{<red,  (1, 2)>},  “red”>, representing the redness of either
object 1 or 2.

Each <{feature  tuple},  string>  pair  indicates  a  syllable
set-to-meaning  relationship.   If  more than  one  string  is
related to the same  {feature tuple} then synonymy occurs.
Synonymy is rare in natural language.  The string with the
highest  probability  of  being  represented  by  each  unique
{feature  tuple} is  selected.   The  most  probable  <{feature
tuple}, string> pairs are stored as lexical items in the model.
These items are not always representative of adult word-to-

meaning boundaries.  Learning phenomena such as under-
generalization  and  mismatching  are  encountered.   For
example, the word “red” should be representative of redness
in any object but is sometimes under-generalized to a single
one object.  Mismatches such as <{<circle, (1)>}, “to the”>
are  also  found.   These  phenomena  are  indicative  of  the
holophrastic stage in learning.

The Syntactic Analysis Unit
Non  adult-like  lexical  items  can  also  express  syntactic
relationships.   Lexical  item (9)  is  a  formulaic function of
lexical items (10) and (11).  The Syntactic Analysis Unit is
responsible for discovering and encoding this relationship.

9. <{<red, (1, 2)>, <circle, (1, 2)>}, “red cir cle”>
10. <{<red, (1, 2)>}, “red”>
11. <{<circle, (1, 2)>}, “cir cle”>

Syntactic relationships are discovered within lexical item
triples (such as (9)-(11)).  One lexical item, (9), must be the
function of the two others items, (10) and (11).  The lexical
items  must  satisfy  both  string  and  {feature  tuple}
relationships.  Given two strings, the model must produce
the third through string concatenation,  i.e. string1 + string2 =
string3.   Also, given two {feature tuple}s, the model must
produce the third through set union i.e. {feature tuple}1 U
{feature tuple}2 = {feature tuple}3.  {Feature tuple} equality
is identifier insensitive, so identifiers need not match.

Rules  capture  these  relationships.   They  relate  Phrasal
Categories  (PCs)  to  one  another  by  the  application  of
Transformations (Ts).  Each new term is defined before the
rule is presented.

Rules are expressed in the form PC1 = PC2(T1) PC3(T2),
where  PC1 is  produced  by combining  the  results  of  PC2,
being transformed by T1, and P3, being transformed by T2.

Phrasal Categories are expressed as the pairing of a set
of strings and a list  of feature tuple identifiers,  <{string},
(identifier)>.  PCs are created to support rule relationships.
There are two kinds of PCs; parent and child.  Given the rule
PC1 = PC2(T1) PC3(T2), PC1 is a root, while PC2 and PC3 are
children.   Root  PCs  acquire  lexical  item  1's  data  and
identifier  end  points  from  T1 and  T2.   Child  PCs  are
populated with strings from the original  lexical items that
they are derived and the appropriate T start point.

Transformations are expressed as a set of feature tuple
identifier pairs, {feature tuple identifier pair}. Feature tuple
identifier pairs define the mapping from a start point to an
end  point,  in transforming feature  tuple  identifiers,  <start
identifier, end identifier>.

The  Syntactic  Analysis  unit  produces  rule  (12)  from
lexical items (9)-(11).

12. PC1 = PC2(T1) PC3(T2), where
PC1 = <{“red cir cle”}, ((1, 2), (1, 2))>,
PC2 = <{“red”}, ((1, 2))>,
PC3 = <{“cir cle”}, ((1, 2))>,
T1 = {<(1, 2), (1, 2)>} and T2 = {<(1, 2), (1, 2)>}.

Rule  (12)  expresses  a  functional  path  to  derive  lexical
item (9), using items (10) and (11).  It specifies the mapping
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from the meaning of items (10) and (11) to producing item
(9).  Rule (12) shows how to generate a {feature tuple} that
represents the string “red cir cle”.  First, the model searches
for lexical items that represent the child PCs.  Lexical items
for “red” and “cir cle” are found; <{<red, (1, 2)>}, “red”>
and  <{<circle,  (1,  2)>},  “cir  cle”>  respectively.   Each
lexical item is transformed based on its PC's T.  The lexical
item for “red” is transformed by T1 and “cir cle” by T2.  In
this case <{<red, (1, 2)>}, “red”> becomes <{<red, (1, 2)
>}, “red”> (no change) and <{<circle, (1, 2)>}, “cir cle”>
becomes <{<circle, (1, 2)>}, “cir cle”> (no change).  The
results  are joined together  through set  union producing <
{<red, (1, 2)>, <circle, (1, 2)>}, “red cir cle”>.

The Syntactic Analysis Unit analyzes every combination
of lexical item triples and produces a rule for each group
that expresses a syntactic relationship.   Rules can express
similar relationships.  Rules (13)-(15) all express the same
relationship.  Rule (13) is the short-hand version of rule (12)
for  improved  readability.   They  state,  that  “red  cir  cle”,
“blue cir cle” and “pink dia mond” can each be produced by
applying the same transformation rules to their children.  A
transformation rule must have the same start point and end
point to be considered equal.

13. {“red”}((1, 2) -> (1, 2)), {“cir cle”}((1, 2) -> (1, 2))
14. {“blue”}((1, 2) -> (1, 2)), {“cir cle”}((1, 2) -> (1, 2))
15. {“pink”}((1, 2) -> (1, 2)), {“dia mond”}((1, 2) -> (1, 2))

When rules  are  found to  express the same relationship,
they are merged together.  Merging rules (13)-(15) produces
(16).  (16) has the generative capacity to produce 6 different
strings; “red cir cle”, “blue cir cle”, “pink cir cle”, “red dia
mond”, “blue dia mond”, and “pink dia mond”.

16. {“red”, “blue”, “pink”}((1, 2) -> (1, 2)), {“cir cle”, “dia
mond”}((1, 2) -> (1, 2))

Rule (16) captures the English grammar rule, NP = Adj.
N,  where  the  'adjective'  set  contains  “red”,  “blue”,  and
“pink” and the noun set contains “cir cle” and “dia mond”.
The rule  states,  among other  combinations,  that  when the
string  “red” directly precedes the string “dia mond”, a  red
diamond is being indicated.  To emphasize, the rule does not
just indicate that there is redness in the scene, nor that there
is diamond in the scene, but that there is an object in the
scene that shares both the properties red and diamond.

From syllable  segmented  strings  combined  with feature
based  meanings,  English-like  grammar  rules  are  derived.
Each rule defines a mapping based not only on individual
lexical items, but groups of lexical items, or PCs, producing
syntactic  units.   These  lexical  items  are  established  by
drawing  word  and  meaning  boundaries.   The  PCs  are
established by drawing lexical item boundaries.  The fixing
of these lexical  item boundaries allows the model to treat
different  words in  a  similar  way and,  ultimately,  produce
novel  relationships  such  “red  dia  mond”  in  the  previous
example.  Furthermore, the lexical item boundaries change
the  model's  perception  of  lexical  status.   While  lexical
analysis  produced  items  such  as  “red  cir  cle”,  syntactic
analysis draws a boundary through the string and its related

meaning, allowing it to be deconstructed and reconstructed
with the application of other items.  PC role (parent or child)
and membership,  therefore,  is  a better  indicator  of  lexical
status than the lexical items themselves.

Comprehension
The  model  is  tested  for  evidence  of  language  acquisition
through comprehension  tasks.   Given  a  string,  the  model
must derive a {feature tuple}.  Following the example from
the last section, assume that the model contains rule (16) and
has never encountered the string “red dia mond” in training.

PC membership offers a better indication of lexical status
than lexical items.  The model searches for the string in all
PCs.   If  the  string  appears  in  a  PC  then its  lexical  item
representation is retrieved.  If the string does not appear in a
PC then the comprehension process continues regardless.  In
this case,  the model has never encountered the string “red
dia mond”, so it not a member in any PC.

The  model  contains  rules  that  specify how to  produce
meanings for  a  number  of  strings.   These  rules  take  two
substrings as input.  Using these rules, the string to parse is
dissected into two parts.  Any string that contains more than
one syllable can be dissected.  The string “red dia mond” is
dissected,  by  syllable  boundaries,  producing  the  pairs
<“red”, “dia mond”> and <“red dia”, “mond”>.  Each string
is  recursively  processed  by  the  comprehension  algorithm
detailed in this section.  Taking <“red”, “dia mond”> first,
the string “red” is processed discovering that it appears in
PC1 and is  associated  with lexical  item <{<red,  (1,  2)>},
“red”>.  With similar success, “dia mond” is found to be a
member of  PC2 with associated  lexical  item <{<diamond,
(1,  2)>}, “dia mond”>.  The string “dia mond” is further
dissected  and  processed  in  the  same  recursive  function.
Neither “dia” nor “mond” appear in PCs.  With results for
“red” (appears in PC1) and “dia mond” (appears in PC2), the
model  searches  for  a  rule  that  can  combine  members  of
these  categories,  discovering  rule  (16).   The  rule  is
instantiated to yield <{<red,  (1,  2)>,  <diamond,  (1,  2)>},
“red dia mond”>.   A possible meaning for the entire string
“red dia mond” is, therefore, {<red, (1, 2)>, <diamond, (1,
2)>}.  The comprehension algorithm searches for additional
results using the alternative dissection, <“red dia”, “mond”>.
No further results are derived.  The string “red dia mond” is
correctly identified as {<red, (1, 2)>, <diamond, (1, 2)>}.

In some cases,  more than one meaning is derived for a
single string.  Each string can map to a non-formulaic result,
through no use of rules, as well as formulaic results, through
the  use  of  rules.   Comprehension  reintroduces  a  form of
homonymy into the model.  “The red cross” can refer to the
Red Cross Foundation and “the red square” to the square in
Moscow  just  as  likely  as  their  geometrically  shaped
counterparts employed in this study.  As long as  multiple
meanings provide plausible interpretations for strings, they
are useful.  String interpretation should reduce the semantic
burden in communication, not necessarily produce a single,
unambiguous interpretation.

As training data  are  added  to  the  model,  lexical  items,
rules, and PCs are derived.  PCs often include lexical items
that  express  English  like  PCs,  found  in  (17)-(19).   PC
membership  grows  as  more  training  data  are  added.   At
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times, more than one PC appears to express the same string
set membership, but at different stages of development.  For
example, (17) represents the full set of colors available to
the model, while (18) and (19) express subsets of (17). 

17. <{“red”, “blue”, “pink”, “green”, “white”, “black”, “ye
low”, “gray”, “lime”, “pur ple”}, ((1, 2))>

18. <{“red”, “white”, “black”, “lime”}, ((1, 2))>
19. <{“ye low”, “gray”, “pur ple”}, ((1, 2))>

During  comprehension,  PCs  are  substitutable  for  one
another if  they appear to express the same string member
set, but at different stages of development.  (17)-(19) are all
considered substitutable for one another.  Given the string
“white”, PCs (17)-(19) are all representative; (17) and (18)
as “white” is a member of their string sets and (19) as it is a
subset of (17).

PC  substitutions  allow  abstract  categories  such  as
adjectives to form faster.  During training, it is common for
PCs like (17)-(19) to form.  Each of these PCs are created
through the derivation of  different  rules  but  all  appear  to
suggest the inclusion of an adjective.   Abstract categories
such as noun, adjective and verb are not necessarily present
in  young  language  learners.   Studies  show  that  children
acquire  language  in  an  item-based,  piecemeal  fashion
(Tomasello, 2000).   Verb analysis, in particular,  shows an
uneven usage.  For example, a child may only use the word
“cut”  according  to  the  sentence  frame  “cut  ___”,  while
“draw” may be used in a variety of manners such as “draw
___”,  “draw ___ on ___”, “draw ___ for ___”,  and “___
draw on ___”.  This suggests that the abstract category of
verb is not yet in place, since the verbs are employed with
different  constraints.   This  model  reflects  a  similar  'verb
island'  formation  but  with  adjectives  and  nouns.   PC
substitutions allow the islands to be connected.

The model is computationally expensive to implement in
both learning and comprehension.  Regularities in training
data  are  maximized  through  a  small  number  of  pattern
matching  mechanisms.   Although  pruning  strategies  have
been  considered,  none have  been adopted  due  to  lack  of
success.  The approach remains computationally expensive,
a serious concern when the target language is scaled-up.

Model Behavior
The  model  is  tested  to  investigate  the  emergence  of  the
holophrastic and early multi-word stages.  The first correct
non-formulaic (non rule-based) and  formulaic (rule-based)
interpretations signal the beginning of the holophrastic and
early multi-word stages respectively.  The model is trained
with 10 sets of 65 randomly generated <event, description>
pairs.  Results presented are an average over the 10 sets.

The Developmental Shift
The  model  is  tested  for  interpretation  of  120  strings  (10
colors, 10 shapes, and 100 color shape combinations).  Each
string  interpretation  yields  a  set  of  possible  meanings.
Correct  meanings are charted in Figure 1 depending upon
how they are derived (non-formulaically, or formulaically).

For  three  epochs,  there  are  no  successful  string
interpretations,  creating  a  pre-linguistic  period.   The  first
correct  interpretation  emerges  at  epoch  four  and  is  non-
formulaic.  This is the model's first word, signaling the onset
of the holophrastic stage.  Being non-formulaic, the word-to-
meaning mapping is representative of first  words in child
language development.  In one set of data, the model's first
word  is  “pen  ta  gon”,  appropriately  associated  with
{pentagon, (1, 2)}.  For 10 epochs, lexical insights emerge
with an increasing volume of correct  non-formulaic string
interpretations.   All  strings  are  representative  of  single
words,  either  colors  or  shapes,  and  never  word
combinations.   At epoch 14,  the first  non-formulaic word
combination is  accurately interpreted.   This non-formulaic
interpretation of a word combination spurs syntactic activity.
The first formulaic interpretation is successfully derived at
epoch 14, signaling the onset of the early multi-word stage.
The  emergence  of  syntax  following  a  period  of  lexical
activity is consistent with child language development.

Figure 1:  Number of correct non-formulaic and
formulaic interpretations.

This result  demonstrates two emergent properties in the
model; lexical and syntactic awareness.  From the outset, the
model  shows no  lexical  or  syntactic  awareness.   After  a
short  period  of  inactivity,  lexical  awareness  emerges,
evidenced  by  the  acquisition  of  first  words.   The
holophrastic stage continues unperturbed for a period before
syntactic  awareness  emerges.   Given  a  larger  and  more
varied training set, that is representative of child linguistic
exposure, the periods are predicted to lengthen.

Lexical and Syntactic Expressivity
The model is tested for non-formulaic interpretation of 20
strings (10 colors, 10 shapes), and formulaic interpretation
of  100  strings  (color  shape  combinations).   Each  string
interpretation  yields  a  set  of  possible  meanings.   Correct
meanings are charted in Figure 2 depending upon how they
are derived (non-formulaically, or formulaically).

The  distinction  between  non-formulaic  and  formulaic
language is clear.  The former makes no use of rules while
the latter  does  make use of  rules.   Formulaic  language is
most expressive when rules are applicable to large sets of
data i.e. phrasal category string membership is high.  This
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model identifies a formulaic relationship at epoch 14.  The
relationship is  representative of  the English grammar  rule
NP = Adj. N.  On establishing this formulaic expression, the
PCs  representing  adjectives  and  nouns,  constrain  rule
expressivity.   A  correlation  between  the  percentage  of
lexical items acquired and the expressivity of the formulaic
expression  exists.   PC  membership  swells  as  subset  and
superset  relationships  are  derived,  allowing  abstract
categories to form.

Figure 2:  Percentage of correct formulaic and non-
formulaic interpretations.

This  result  demonstrates  that  the  expressive  power  of
syntactic rules is correlated with the number of lexical items
correctly identified in the model.   As lexical  membership
increases, PC string membership expands, and rules become
more  expressive.   This  finding  is  consistent  with  child
language  acquisition.   As  phrasal  categories  form,  they
become increasingly abstract and employed by a number of
rules.   Given  more  strict  PC  connectivity  constraints,
Tomasello's (2000) verb island effect is predicted.

Conclusion
The  model  demonstrates  two  behavioral  shifts  that  are
present  in  child  language  development.   First,  lexical
awareness emerges as syllable combinations are recognized
as expressions of word-to-meaning mappings.  This period
persists in the absence of syntactic awareness.  Second, word
combinations  are  recognized  as  expressions  of  syntactic
relationships.   Syntax  emerges  and  becomes  increasingly
expressive as training continues.  The item-based acquisition
strategy can acquire language in a child-like manner through
exploiting a  small  number of  cognitively general  learning
mechanisms.
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