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Abstract

We report a computational study on the CHILDES database for
learning a word grammar of Turkish nouns. The syllable-based
model converges to a morpheme-based model in terms of over-
laps in the set of lexical hypotheses. Morphology is a hidden
variable in all models, and the search problem for hypotheses
is narrowed down by a probabilistic conception of universal
grammar à la Combinatory Categorial Grammar. The conver-
gence of the syllable model suggests that morphemehood can
be an emergent computational property.

Keywords: Morphology, grammar, learning, Bayesian model.

Introduction
How can the meaning and category of words arise in the mind
of a child? On one hand, we have the problem of identifying
segments of speech as word-like units. On the other, we have
the problem of identifying which meanings go with which
substrings in speech. The assumption, common to both gener-
ative and cognitive linguistics, is that the child has the innate
capacity to associate forms with meaning, and it is a question
of acquisition to tackle the problem of deciding which forms
go with which meanings.

A quick glance over the Turkish fragment of the child-
directed speech in the CHILDES database reveals that 44%
of the nouns are uninflected; the remaining 56% are inflected
by means of affixes and clitics. The question then arises
as to how the meaning and category of the inflected words,
which constitute the majority, are acquired by the child. A
common concept, influential at least since Bloomfield, is that
morpheme is the minimal meaning-bearing element in natu-
ral languages. Nevertheless, although there are clear phono-
logical and prosodic cues for word boundaries (e.g. Jusczyk,
1999; Thiessen & Saffran, 2003), there are no apparent cues
for morpheme boundaries, hence the task of learning mor-
pheme meanings to come up with word meanings is not made
easier by labeling some items as morphemes in the compe-
tence grammar of adults.1

1Aksu-Koc & Slobin (1985); Peters & Menn (1993) report pro-
duction data of respectively Turkish and English children of age 2;6
and younger, during which the child produces meaningless filler syl-
lables. Peters & Menn data show this is not idiosyncratic to verbs.
Contra the remarks of both work for Turkish without a statistic, mor-
pheme and syllable boundaries do not generally coincide. Only 23%
of the syllables in nouns (out of 20,433 syllables) are also mor-
phemes in the CHILDES database. If we only match boundaries (the
beginning and end of a morpheme align with a syllable boundary, ir-
respective of whether the syllable and the morpheme are the same),
e.g. araba-lar (car-PLU, Turkish) versus the syllables a·ra·ba·lar
providing two matches out of 4 syllables, the overlap is 57%.

There are indeed phonological and prosodic cues for dis-
cerning substrings smaller than words, namely syllables
(rhythm), stress and pitch accents. In this work, we report
a computational study which starts with the ability to iden-
tify syllables, and learns the meaning and category of words
and morphemes without the assumption that only words and
morphemes have a meaning. The kind of meanings that the
system starts with and learns more of is not lexical meanings,
such as what it means to be a dog or to sleep (see Tenen-
baum & Xu 2000 for a Bayesian way to tackle that prob-
lem), but the combinatory meaning and its syntactic reflex
in the form of a category, as a lexical hypothesis, for example
how pisi-ler-e (kitty-PLU-DAT, Turkish), with the syllables
pi·si·le·re , can come to be associated with a logical form such
as to′(plu ′cat ′) and the syntactic type N for nouns (and oth-
ers, such as VP modifiers). We show that under a Bayesian
scenario of hypothesis revision with the Universal Grammar
as the provider of likelihoods and priors, starting with sylla-
bles and the assumed ability to associate forms with mean-
ings converges to a lexicalized grammar of words and mor-
phemes, by showing a significant overlap with the lexical hy-
potheses of a learning model which works with the assump-
tion that only morphemes and words constructed from them
have meanings.

Crucially, morphology of words is a hidden variable in our
model, and the input to the system are pairs of sequence of
syllables (in lieu of phonological form, PF) and a logical form
(LF), without any indication as to which syllable contributes
to what part of the LF, or which part of the meaning of a mor-
pheme is covered by a syllable. This is unlike the approach of
Jack et al. (2006), another syllable-based acquisition model,
in which a sequence of syllables is paired not with a possi-
bly ambiguous LF but with a disambiguated representation
of world meanings. We do not assume that the child knows
pisi is kitty, and ler is plural; she might (wrongly) hypoth-
esize pisi is plural and ler means kitty, or the first syllable
of pisi (pi ) means kitty, etc. We also differ from Aronoff et
al. (2006), whose model detects frequently-occurring sound
sequences and hypothesizes that they are morphemes. Our
model aims to learn the correct LF of the purported mor-
pheme as well, not just its form.

Universal Grammar

What allows our system to learn with reasonable efficiency is
that the search problem for lexical hypotheses is kept man-
ageable by a Universal Grammar (UG) and the current lexi-
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calized grammar, and that the input words are relatively short
compared to adult input, so that considering all possibilities
of syllable-LF associations is tolerable computationally, as
suggested by Steedman & Hockenmaier (2007) for learnabil-
ity of short utterances involving multiple words.2

We shall assume that UG comprises a set of principles and
a set of universal combinatory rules, which are completely
type-dependent, rather than structure-dependent. Steedman
(2000) shows how Combinatory Categorial Grammar (CCG)
can fulfill that role, which gives CCG its explanatory edge
compared to structure-dependent accounts, to explain the so-
called nonstandard constituency in bounded and unbounded
dependencies such as in coordination and relativization asym-
metries, to integrate intonation structure, information struc-
ture and constituent structure as arising from the same deriva-
tional system of projecting (PF, LF) pairs from the lexicon to
phrases. Steedman & Hockenmaier (2007) show how CCG
can bootstrap and facilitate learning a lexicalized grammar of
a natural language, with examples involving the use of words
from the stage of 2-word syntax onwards.

We will confine ourselves to a few principles related to our
work, and to one combinatory rule that seems most relevant
to acquiring a word grammar, viz. function application. It is
defined as follows:

(1) a. Forward Application:
X/Y: f Y: a ⇒ X: fa (>)

b. Backward Application:
Y: a X\Y: f ⇒ X: fa (<)

The elements of a CCG lexical hypothesis are:

(2)

string︷︸︸︷
like :=︸︷︷︸

string
type

category︷ ︸︸ ︷
syn. type︷ ︸︸ ︷

(S\NP)/NP :

lambda term︷ ︸︸ ︷
λxλy.︸ ︷︷ ︸

correspondence

like ′
(e, (e, t))︸ ︷︷ ︸
sem.type

xy

︸ ︷︷ ︸
logicalform

In a lexicon of morphemes and words, these type assignments
and rules engender a derivation of pisi-ler-e as follows:

(3) pisi ler e
kitty -PLU -DAT

N: cat ′ N\N: λx.plu ′ x Ndat\N: λy.to′ y
<

N: plu ′cat ′
<

Ndat: to′(plu ′cat ′)
‘to the kitties’

The following principles of UG narrow down possibilities for
universal rules and lexical types, independent of whether the
type assignment is to a word, morpheme, affix, clitic, syllable,
sign or tone:

2The numbers are as follows: pisilere := to′(plu ′cat ′) example
provided earlier requires 4 morpheme-LF pairings to be considered
in the morpheme model, and 8 syllable-LF pairings in the syllable
model. Average number of pairings are respectively 3.24 and 5.63 in
CHILDES. In contrast, an “adult word” such as kitabındakilerdeki
would require 49 and 343 pairings respectively.

(4) The Principle of Categorial Type Transparency (PCTT):
(Steedman, 2000)

“For a given language, the semantic type of the interpre-
tation together with a number of language-specific direc-
tional parameter settings uniquely determines the syntactic
category [syntactic type] of a category.”

In the pair (σ, µ) of a lexical category, the syntactic type
σ and the semantic type µ are co-determined: µ is of type
T σ, and σ is of type T −1µ, where T is a relation with
inverse. If σ is a syntactic functor α\β or α/β, then its
semantic type is T σ = T β 7→ T α.

The Prin. of Combinatory Type Transparency:

“All syntactic combinatory rules are type-transparent ver-
sions of one of a small number of simple semantic oper-
ations over functions.” [They are called B, T and S in
Curry’s Combinatory Logic.]

The Principle of Consistency (PC):

“All syntactic combinatory rules must be consistent with
the directionality of the principal functor.”

For example, (5a–c) are not viable lexical hypotheses (assum-
ing for 5a that the child has not been constantly exposed to
*ler-pisi ‘PLU kitty’ as well by an unduly sarcastic adult).
The first one violates PC, and the others violate PCTT: a syn-
tactic functor has to correspond to a predicate, not to a propo-
sition as in (5b); a 2-place syntactic functor cannot originate
from a 1-place predicate as in (5c).

(5) a. {pisiler := N, pisi := N\N, ler := N} (*)

b. ler := N\N: plu ′
(t) (*)

c. tut (catch) := S\NP\NP: λx.catch ′
(e,t)x (*)

The Models
We have developed three models: 1) A syllable-based model
(SBM) in which an LF is associated with a sequence of syl-
lables, 2) a morpheme-based model (MBM) where an LF is
associated with a sequence of morphemes, and 3) a random
model (RM) in which a randomly-segmented word is associ-
ated with an LF.

All models use the same statistical learning mechanism.
Each input is a word segmented according to above, depend-
ing on the model, with the LF paired with the entire sequence
of units in the word. We assume that the number of units per
word is always greater than or equal to the number of terms
in the LF, so that for example a polysyllabic word can in prin-
ciple be associated with a one-term LF. We thus distinguish
zero-morphemes from root forms. The plural sheep would
have the LF sheeps ′, not plu ′sheep′ if we used English data
(we consider relaxing this assumption as future work; Turk-
ish seems to have no zero-morphemes, and composite suffixes
such as -leri ‘-POSS.3PERS.PLU’ are indeed polysyllabic).
The output is a lexicon containing the lexical hypotheses as
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items of a lexicalized grammar, such as (2). A lexical hypoth-
esis is a 4-tuple (PF, σ, LF, w), where σ is the syntactic type
(e.g., N, N\N), and w is the outcome of the system’s belief in
the hypothesis (0 ≤ w ≤ 1).

All models use Algorithm 1 for learning. Learning is
achieved by updating the weights based on new input. The
model follows a simple statistical method for updating the
weights. The weights in the lexicon are the probability, or
system’s belief, that the lexical item in question is correct.
Each weight update consists of determining the new weight,
the probability of the lexical hypothesis h given the new ev-
idence E. The new evidence E is the input word segmented
one of three ways, depending on the model. The weight of
the lexical item after seeing the input is updated by (6).

(6) w = w0 + αw0L(1− w0)

where w0 is the probability (or weight) of the lexical hypoth-
esis before seeing the input E. If the hypothesis is already in
the lexicon, w0 is the weight of the hypothesis in the current
lexicon, otherwise an arbitrary initial value is assigned. L in
the formula is the likelihood P (E | h) in Bayesian terms (7).

(7) P (h | E) = P (E|h)P (h)
P (E) ∝ P (E | h)P (h)

L is calculated as the number of parses in which hypothesis
h is used, divided by the total number of parses of the word.
This determines the contribution of the new input to the pos-
terior probability. The higher the number of parses that the
hypothesis supports, the higher the likelihood value will be.
If the hypothesis is used by all possible parses of the input,
the value is 1. The value gets smaller due to the parses that
do not include the hypothesis. The final term in the formula,
1− w0, normalizes the result so that the new weight is in the
range (0,1]. α is a constant that is used to control the learn-
ing rate. Throughout the experiments it is kept at 0.01 (small
perturbations in the neighborhood did not have any effect in
preliminary runs).

The final weight, the posterior probability of the hypothe-
sis is increased with a value directly proportional to the prior
P (h) and the likelihood P (E | h), as shown in (6). Rewrit-
ing (6) and (7) together, we get:

(8) P (h | E) = P (h) + αP (h)P (E | h)(1− P (h))

Our approach is inspired by Bayesian hypothesis revision, but
it is not strictly Bayesian. Firstly, the implicit assumption is
that there is no negative evidence, as the probabilities do not
decrease. One can see no increase in the weight of a hypothe-
sis as less belief in it, compared to its alternatives with higher
weight. The problem can be alleviated if we can fit a distribu-
tion for P (E), but this is rather difficult if not impossible. We
can assume that it is constant for all real word experiences E,
therefore it can be ignored in the search for maximum poste-
riors (cf. Step 3d of Algorithm 1).

Secondly, the system has no grounds to distinguish infre-
quent but correct hypotheses from incorrect but frequent hy-
potheses. In the first case, the belief in a hypothesis would

not increase much, and in the second case, it will continue to
increase, albeit slowly. This is a more serious impediment to
approximating the acquisition of grammar by the child in real
life, and short of faithfully approximating P (E), the issue
remains controversial.

Algorithm 1 Training the three models.
1. Inputs: 1) The initial lexicon L0. 2) A pair (PF,LF). PF is

the segmented word. LF is the logical form for the entire
PF.

2. Output: The final lexicon Lf . The procedure stops when
no more hypotheses are added to the lexicon.

3. After the nth input, the updated lexicon Ln is determined
by the following procedure:

(a) All possible lexical hypotheses from the input are gen-
erated by CCG rules.

(b) Generated hypotheses are placed in a temporary lexicon,
LT . The weights of the items are obtained from the cur-
rent lexicon Ln−1. If the lexical hypothesis is not in
Ln−1, an initial weight ws is assigned for the weight of
the item in LT . In the experiments, an initial weight of
0.1 is used.

(c) All possible parses of PF using LT are produced. Each
parse is assigned a weight proportional to the weights of
all the lexical items used in the derivation.

(d) All the hypotheses used in the derivation of PF with the
highest weight are added to Ln, with the new weight
determined by (6).

We use Algorithm 1 to train all models. It is adopted from
Zettlemoyer & Collins (2005), who also use CCG as a frame-
work, with a different update mechanism. The crucial point in
their algorithm is to allow any contiguous substring of the in-
put to be a lexical item. We use the principles of CCG (4) for
eliminating the illicit hypotheses, whereas they can eschew
the principles because their inventory of types is specific to a
geography database, providing a similarly constrained behav-
ior without UG.

An example
To exemplify the different behavior of the models, starting
with an empty lexicon, we go through the process of learning
two related words: oda (room) and oda-ya (room-DAT). We
chose short words to save space, one with two syllables (o·da)
and a single morpheme (oda), and the other with three sylla-
bles (o·da·ya) and two morphemes (oda-ya); longer words are
attested in CHILDES. For example adam-lar-a (man-PLU-
DAT) produces 20 hypotheses in MBM, and a staggering
number (49) in SBM.3

3Interestingly, the notorious -ki suffix, which causes recursion
in morphology to produce indefinitely long words, is nonexistent in
recursive form in CHILDES. We counted 30 instances of single use
of -ki , out of 20,000 morphemes. 17 of them are word-final.
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For the first word oda , the input to SBM is the pair (o·da ,
room ′), while MBM gets as PF the whole word as one unit.
Step 3a generates the single hypothesis (9) in both MBM and
SBM. The input contains only a basic LF, hence no attempt is
made to find smaller units in PF.

(9) (oda , N, room ′, 0.1)

With the hypothesis (9) placed in the temporary lexicon in
Step 3b, the algorithm generates a single parse of the input.
As the only lexical item in the winning parse, the hypothesis
is inserted into the lexicon with a weight adjustment accord-
ing to (6), which increases it to 0.1009.

The second input is segmented as (oda-ya , dat ′room ′) for
MBM, and (o·da·ya , dat ′room ′) for SBM. The morpheme
model maintains the hypotheses (10), after Step 3c of Al-
gorithm 1 eliminates potential hypotheses such as oda :=
Ndat\N: λx.dat ′x and ya := Ndat/N: λx.dat ′x, because no
universal rule can use them in any derivation of this experi-
ence.

(10) (oda , N, room′, 0.1009) (ya , Ndat\N, λx.dat′x, 0.1)
(oda , Ndat/N, λx.dat′x, 0.1) (ya , N, room′, 0.1)

Hypotheses such as oda := Nplu/N: λx.dat ′x are eliminated
by a currently oversimplistic closed-world assumption, by
which the child’s linguistic world is embodied in the lexicon
and the current experience, neither of which includes plural-
ity at this stage.

All hypotheses except (oda , N, room ′, 0.1009) have the
weight 0.1, because none of them were in the lexicon. Sim-
ilarly, the syllable model produces the following set for the
input (o·da·ya , dat ′room ′) :

(11) (o , N, room′, 0.1) (daya , Ndat\N, λx.dat′x, 0.1)
(o , Ndat/N, λx.dat′x, 0.1) (daya , N, room′, 0.1)
(oda , N, room′, 0.1009) (ya , Ndat\N, λx.dat′x, 0.1)
(oda , Ndat/N, λx.dat′x, 0.1) (ya , N, room′, 0.1)

After Step 3d, the lexicon contains the items in (12) and (13),
with the updated weights respectively for MBM and SBM.
Lower weights for SBM are due to likelihood, which is in-
versely proportional to the total number of parses, which is
higher in this example for SBM.

(12) (oda , N, room′, 0.101354) (ya , Ndat\N, λx.dat′x, 0.10045)

(13) (oda , N, room′, 0.101127) (ya , Ndat\N, λx.dat′x, 0.100225)

The algorithm depends on the occurrences of isolated forms
to start up, which are generally the root forms. However, the
system makes use of frequently occurring forms to learn other
forms without having seen them in isolation. For example, a
third input masaya (table-DAT), segmented as masa-ya for
MBM and ma·sa·ya for SBM, would cause both systems to
add (masa, N, table ′) into their lexicon, as well as increasing
the weight of (ya , Ndat\N, λx.dat ′x).

In closing we note that if initial assumptions that are put in
the lexicon are incorrect, they would nevertheless be licensed
by UG, to be corrected only by further experience in a Siskin-
dian (1995; 1996) scenario. The role of the current lexicalized

grammar as the trigger of negative feedback is crucial in this
respect: The child has the current set of hypotheses at her
disposal to realize in a new experience that she might have
assumed wrongly about which part meant what, as calculated
in steps 3b–c of Algorithm 1.

Experiments
We measure the success of the models with usual metrics over
the final lexicons (precision, recall, f-score), and with two
sets of tests: recognize and generate. The first test measures
each model’s ability to deal with unseen PFs, and the second,
unseen LFs. We use the following items for comparison:

Lr: The reference lexicalized grammar. This is a
manually-derived MBM-type adult competence grammar of
Turkish nouns in CHILDES. It contains all free and bound
morphemes in the data. Lm: The lexicalized grammar
learned by MBM. Ls: The lexicalized grammar learned by
SBM. Lrm: The lexicalized grammar learned by RM.

Data
Our data is the Turkish noun fragment of CHILDES
(MacWhinney & Snow, 1990). It contains 51 recording ses-
sions with 33 children. The ages of the children vary between
2;0 to 4;8. The average age of children is 3;4.

We use the child directed speech (CDS) in the corpus. All
the nouns in the CDS have been segmented at morpheme
boundaries. Each segmented word is tagged with an LF to
establish Lr. We left out derivational suffixes as future work.
All derivational morphemes are considered part of the nomi-
nal root. Due to the nature of CHILDES transcriptions, auto-
mated segmentation and tagging was not practical; they were
done mostly by hand.

The data for training and testing contains 12,274 nouns
out of 33,450 words in the CDS. The total number of mor-
phemes (nominal roots/stems with possible derivations, and
inflectional morphemes) is 20,433. The number of syllables
is 27,497.

Test Measures
The standard measures translate to the following in our case:
precision(p)=hits/(hits + noise), recall(r)=hits/(hits +
misses), f-score=2pr/(p + r), where for any lexicon Lx, an
entry that is both in Lx and Lr is a hit, an entry that is not in
Lx but in Lr is a miss, and an entry that is in Lx but not in
Lr is noise. We also compare Lm and Ls.

All models have been trained with equal amount of input.
Table 1 shows the value of measures and the size of the lexi-
cons (the number of lexical items with a syntactic type).

The lexicon learned by MBM (Lm) is very similar to Lr.
MBM fails to learn 5 of the inflections in the input, and in-
correctly learns 4 items which are not in Lr. The misses are
due to infrequent salient occurrence of the morphemes. The
other errors are due to ambiguous inflections. All the differ-
ences in Lm and Lr are due to affixes; the model learned the
complete set of root/stem forms in Lr.
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Table 1: Test measures over the lexicons.
Lexicon #of items precision recall f-score
Lr 1041 100.00 100.00 100.00
Lm 1040 99.61 99.51 99.55
Ls 909 81.73 71.37 76.19
Lrm 1697 51.73 83.57 63.90

Table 2: Results of the 10× recognition tests.

Lexicon precision recall f-score
µ σ µ σ µ σ

Lr 87.00 1.63 92.90 1.66 89.83 0.79
Lm 86.70 1.42 92.90 1.66 89.67 0.66
Ls 84.20 4.32 72.80 2.04 78.02 2.06
Lrm 57.10 3.35 82.00 2.98 67.21 1.71

As expected, SBM’s performance is lower than MBM.
However, it is significantly more precise than RM. SBM
misses to learn 268 (28%) morphemes while learning an ad-
ditional 166 (18%) morphemes which were not in Lr. Like
MBM, SBM could not learn a number of morphemes that
were not frequent enough in the input. However, the majority
of the morphemes that SBM fails to learn are the morphemes
whose boundaries do not match with syllable boundaries. The
additional items that are learned mistakenly also follow a
similar pattern. Most of them are due to morpheme-syllable
boundary mismatch. For example, for the plural suffix lar , Ls

contains the lexical item la := Nplu\N: λx.plu ′x, in addition
to the adult reference entry lar := Nplu\N: λx.plu ′x. Ignor-
ing single-phoneme differences, like in the example above,
the number of misses by SBM drops to 165 (15%), and the
number of mistakenly learned items drops to 31 (3%).

Recognition and Generation
CCG’s lexicalized grammars can act both as recognition
mechanisms, deriving an input PF to its possible LFs, and
as production mechanisms that output the possible PFs for
an LF. To test the success of the models and the differences
between them, all models have been run through these tests
after equal amount of training. We use the same data set of
the lexicon comparison tests.

For both generation and recognition experiments, we em-
ployed 10-fold cross-validation. The data set is divided into
10 subsets with equal number of words, and the models have
been trained 10 times, each time leaving a different subset as
test set and training set. The numbers reported in Table 2 and
Table 3 are average and standard deviation of measures for 10
experiments.

The recognition test can produce multiple parses leading
to the same or different LFs. Our criteria for hit, miss, and
noise in this experiment are as follows: If the lexicon was
able to engender the intended semantic form at least once, it

Table 3: Results of the 10× generation tests.

Lexicon precision recall f-score
µ σ µ σ µ σ

Lr 16.20 0.92 92.90 1.66 27.59 1.30
Lm 16.10 0.88 92.90 1.66 27.44 1.24
Ls 15.20 1.14 71.70 1.83 25.08 1.53
Lrm 0.90 0.32 91.20 1.52 1.78 0.63

is considered a hit. If no parse producing the target LF is
found, it is a miss. Any parse that did not lead to expected LF
is noise.

Because of the words that are in the test set but not in the
training set due to 10-folding, parsing all the input in the test
sets was not always possible, even for Lr. Ambiguous mor-
phemes, on the other hand, caused multiple parses, hence the
low precision values for all the models in Table 2 .

Similar to the agreement statistics, Lm performs very close
to Lr in recognition. Due to the smaller number of lexical
items SBM learns in these experiments, its recall performance
is slightly worse than all others. However, it is almost as
precise as Lm and Lr.

The generation test produces the possible PFs for the input
LF. Due to multiple phonetic alternations, and lack of phono-
logical knowledge in the models, the generation test always
overgenerates. For example, the logical form plu ′man ′ gen-
erates both adam-lar and adam-ler , the latter only violating
vowel harmony. On average, Lr and Lm generate 5.61 PFs
per LF, Ls 4.62 and Lrm 80.92.

Except the high rate of noise generated by all models, the
results of generation tests are again similar to those of agree-
ment statistics. Lm performs very close to Lr, and Ls does
comparably, but slightly worse.

Discussion and Conclusion
With varying degrees of success, all three models we investi-
gated do learn a syntactic type for the (LF, PF) pair, that is, a
fragment of grammar, in our case a word grammar.

Our main result is as follows: Although we expected the
morpheme model MBM to approximate an adult reference
word grammar, the syllable model SBM is unexpectedly not
too far behind, at least in the circumstances where word-
level ambiguity is kept to a minimum. This is promising
for grounding early development of language in perception.
SBM’s success seems to depend on its ability to consider any
contiguous substring of syllables as potential bearer of an LF
(or part of it). This is not always possible since morpheme
boundaries do not always coincide with syllable boundaries.
With a reasonable margin of error (one phoneme), SBM
shows comparable performance with MBM in all tests.

The success of the morpheme model is also noteworthy.
Even though the input is segmented at morpheme boundaries
in MBM, it still needed to match the correct (PF, LF) pairs in
the input. It does this successfully, only failing in case of am-
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Table 4: Overall comparison of the lexicons. EM (Exact
match) is the count of matching items with identical (PF, syn.
type, LF). NM (Near match) ignores a single phoneme dif-
ference in PF. LFS (LF/syn.type match) ignores the PF com-
pletely.

Roots
& Stems Inflections Total

# items in Lr 886 155 1041
# items in Lm 886 154 1040
# items in Ls 802 107 909
EM: Lr & Lm 886 150 1036
EM: Lm & Ls 684 59 743
NM: Lm & Ls 774 101 875
LFS: Lr & Lm 886 150 1036
LFS: Lm & Ls 719 83 802

biguous morphemes. Given the lack of disambiguating cues
in the models, it seems that word learning in the model is fur-
ther facilitated by less ambiguity in word structure, compared
to syntactic structure.4

10-fold cross-validation does not reveal all the similari-
ties between morpheme and syllable models. Taken all to-
gether as one lexicalized grammar, the numbers are as in Ta-
ble 4. It is significant that there is a 71% exact match of
lexical hypotheses of the syllable model and the morpheme
model. Granted that the exact match of bound morphemes is
low (around 40%), we have to keep in mind that the syllable
model does not come with root/stem boundaries, therefore the
exact match of these forms (77%) is very significant.

In the course of development of the child, there will cer-
tainly be more novel free morphemes in the lexicalized gram-
mar than novel bound morphemes. One estimate for Turkish
is that children master the nominal paradigm by 24 months
or earlier (Aksu-Koc & Slobin, 1985), therefore allomorphy
of bound morphemes (all lexical hypotheses for morpheme-
like units in our terms, including their correct PF) is already
intact by that age in real life. This can only help the syllable
model to converge to the morpheme model more, if the same
relative success rate can be maintained. We can then surmise
that morphemehood need not be a theoretical primitive, since
computation might deliver the morphemes without having to
start with that assumption.

Both models stand in sharp contrast with the random
model. Its performance shows that the success of morpheme
and syllable models is not due to chance. Since all models use
the same universal grammar to control the explosion of num-
ber of hypotheses, the importance of adequately capturing the

4There is no room for parameters in CCG, because UG is not
conceived as the initial state of competence grammar; it is invariant
and only the lexicalized grammar is learned. Therefore, a trigger-
based scenario of acquisition via parameters such as that of Fodor
(1998) where knowledge of structural unambiguity by the learner is
assumed is incompatible with CCG. A potential explanation lies to-
ward understanding the work of perceptual cues in narrowing down
the hypotheses space allowed by a probabilistic universal grammar.

cues in child-directed speech is clear. As future work we in-
tend to relax the close-world assumption to observe the learn-
ing rate of generating more hypotheses early in the course
of development. We think that universal grammar will still
be indispensable for narrowing down the hypothesis space,
but other cues such as stress, intonation and access to possi-
bly ambiguous extra-linguistic world (scenes, objects, events
etc.) will have to be incorporated to limit the search to obtain
reported early development of word grammar.
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