Action Anticipation and Interference: A Test of Prospective Gaze

Erin N. Cannon (ecannon@umd.edu)
Department of Psychology, University of Maryland
College Park, MD 20742 USA

Amanda L. Woodward (awoodward@psyc.umd.edu)
Department of Psychology, University of Maryland
College Park, MD 20742 USA

Abstract

In the current study we investigate the proposal that one aspect of social perception, action anticipation, involves the recruitment of representations for self-produced action. An eye tracking paradigm was implemented to measure prospective gaze to a goal while performing either a motor or working memory task. Results indicate an effect of the motor task, suggesting the interference of a shared motor and action perception representation.

Keywords: Eye tracking; Action Perception; Motor representation; Working Memory.

Introduction

Findings from both non-human primates and adult humans suggest that some aspects of social perception recruit representational structure from systems that guide one’s own actions. The discovery of “mirror neurons” in nonhuman primates (DiPelligrino, Fadiga, Fogassi, Gallese, & Rizzolattii, 1992; Gallese et al., 1996) and mirror-like responses in human brain imaging studies (e.g., Buccino et al., 2001) indicate that perceiving others’ actions activates regions associated with action control. It has been hypothesized that these mirror systems contribute to action understanding and the perception of others’ intentions (e.g., Decety & Grezes, 2006, Gallese & Goldman, 1998). In the current study we investigate the proposal that one aspect of social perception, action anticipation, involves the recruitment of representations for self-produced action.

The mirror neuron system and predictive gaze

Studies have shown that when people perform an action, such as moving an object from one position to another, their gaze will shift ahead towards the goal or endpoint before the object in hand arrives (Johansson et al., 2001, Land, Mennie & Rusted, 1999). Likewise, when observing someone else performing an action, adults also show this predictive gaze shift to the goal, just as when they perform the action themselves (Flanagan & Johansson, 2003). This predictive gaze behavior seems to be specifically elicited by the observation of an agent who produces a well-structured goal-directed action (Flanagan & Johansson, 2003; Falck-Ytter, Gredebäck, & von Hofsten, 2006).

To illustrate, Falck-Ytter et al. (2006) showed adults, 12-month-olds, and six-month-old infants trials of either a human agent moving three objects into a bucket, or self-propelled animate-looking objects flying into a bucket. The eye tracking device pinpointed participants’ points-of-gaze while watching each trial type. Therefore, it could be determined whether subjects made predictive looks to the goal, or passively tracked the moving objects. Both adults and 12-month-olds made predictive looks toward the goal (the bucket) when the human agent moved the objects, but not when the objects were self-propelled. Thus, action anticipation only occurred when participants witnessed a goal-directed action. Age differences in the results suggested a link to participants’ own motor abilities: Unlike older infants, six-month-olds tested in the human agent condition did not show any anticipatory looking, perhaps because such an action was not in their motor repertoire. The authors suggested six-month-olds’ lack of anticipatory responses might reflect their lack of a motor representation for the action of putting balls into a container.

The fact that similar anticipatory gaze patterns occur for both self-produced and observed actions has been taken as evidence that these two responses rest on a shared system. Consistent with this claim, ERP research has found that when an observed action is predictable with respect to the endpoint or goal, motor activation occurs within the observer just prior to the onset of the action (Kilner et al., 2004). This finding implies that the anticipatory nature of one’s own motor system might also influence the utilization of shared representations, allowing one to anticipate or predict others’ motor behaviors. Although the similarity in patterns of anticipatory gaze for self- and other-produced actions is suggestive of shared representations (Flanagan & Johannsson, 2003), these findings do not specifically test whether anticipatory gaze recruits motor representations.

In the current study, we tested this hypothesis directly by assessing the effects of motor versus verbal concurrent tasks on participants’ action anticipation. If visual action anticipation recruits motor processes, then we predict that a concurrent motor task (finger tapping) will interfere with action anticipation, but a working memory task (sub vocal rehearsal) will not interfere or will interfere less strongly with action anticipation. We used the paradigm developed by Falck-Ytter and colleagues (2006) as a measure of action anticipation.

Method

Participants. Forty-five adults participated in this study, 29 females and 16 males. Each was assigned to one of three
conditions: Observation, Finger-tapping, or Working Memory. An additional 6 adults were tested but excluded from the analysis due to a failure to collect enough data points, Observation (N = 0), Finger-tapping (N = 3), and Working Memory (N = 3). See inclusion criteria in the Data Reduction and Analysis section below. Participants were recruited from the Psychology department's undergraduate subject pool and received extra credit in their Psychology courses in exchange for their participation.

Apparatus and Stimuli. Data were collected via corneal reflection using a Tobii 1750 (Tobii Technology). This specialized 17” monitor contains near-infrared lights and a camera mounted around the video-stimulus display. Head motion tolerance of the Tobii 1750 is 30 x 16 x 20 cm from a viewing distance of approximately 60 cm. The monitor was attached to a movable arm, easily adjusted to an optimum distance and angle to record each participant’s eye movements. Two PC computers were networked with the Tobii 1750; one recorded the gaze data collected from both eyes at a rate of 50Hz; and a second PC ran the Clearview 2.5.1 software (Tobii Technology). This software program recorded the calibration data and integrated the gaze data with the images being viewed. It also allowed the researcher to define time windows of interest and regions within those windows, or areas of interest (AOIs) that were identified in the time-stamped output if a fixation fell within that region.

Participants viewed a video in which an actor was shown sitting at a table with a bucket to his right and three balls to his left. He moved his right hand to grasp the balls and moved them to the bucket, one at a time. The natural sound of the rubber ball hitting the metal bucket when it dropped in could be heard. The total duration of the movie was 12 s, and the time it took to move the three objects until they disappeared into the bucket was 1.08, 1.26, and 1.22 s, respectively.

Procedure. Participants sat approximately 60 cm from the Tobii monitor, in a small research room with black curtains covering the walls. Informed consent was obtained from all participants. First, each participant was given a 9-point calibration in which a blue dot appeared against a white background at nine different points on the screen. There were three between-subject conditions that each required a slightly different instruction. In the Observation condition, participants were told they would be observing several trials of a movie involving a person performing an action. They were encouraged to attend to the video and avoid thinking about potential distractions (such as what they are doing later, etc.) during the two-and-a-half minute presentation. In the Finger-tapping condition, participants were given the same instructions as above, but were told that after the second movie presentation, the experimenter would instruct them to tap their fingers in one of two sequences during the next trial. The finger tap sequence was meant to be simple, thus the cascade sequence used in previous working memory studies (e.g., Kane & Engle, 2000) was adopted for this task. Participants rested their dominant hand on a clipboard placed on their lap. They were instructed to rest their thumb against the board and either tap from starting with their pinky (little finger) to the index finger, or starting with their index finger in sequence out to the pinky. Participants were instructed to continue repeating the sequence during the entire length of the movie. They were told to go at whatever pace they were comfortable with, but to try to keep a steady rhythm. Speed was not important but accuracy of tap order was important. Finger taps were video taped to record the accuracy of the tap sequences. Participants were given as much time as they wanted to practice the two different finger tap orders prior to starting movie presentations. Participants in the Working Memory condition were also given instructions similar to the Observation group, with the exception that starting on the third trial, the experimenter would give a sequence of four letters or numbers to repeat, then to sub-vocally rehearse it while watching the movie. At the end the experimenter would say “Go” and they were to repeat the rehearsed sequence. They were told we were interested in the accuracy between the pre- and post-movie responses. Participants were asked to make a conscious effort to sub-vocally rehearse even if they did not feel it was necessary for remembering the sequence. For each of these memory trials a unique sequence of the letters “R” “C” “M” and “L” were given, or the numbers “6” “9” “5” and “3.” Number or letter sequences alternated over trials. There were a total of nine movie presentations. The first two presentations all participants watched, and thus served as the baseline trials. The following seven trials participants either watched, finger-tapped, or sub-vocally rehearsed based on the randomly assigned condition (Observation, Finger-Tap or Working Memory, respectively). Each movie was 12 seconds in length and followed by a four second attention-getter: a black screen with a toy moving at the center and making a sound. This was used to promote overall attention and to signal to the participant the start of the movie. In the WM condition, an additional blank screen appeared for 5s
immediately following a movie presentation. This served as
the response window for the participant to repeat the
rehearsed sequence, then the experimenter to give a new
sequence to be immediately repeated aloud and sub-vocally
rehearsed during the proceeding movie. The combined
length of all trials including attention getters was
approximately 140 s in the Observation and Finger-Tap
conditions, and 175 s in the Working Memory condition.

Predictions. Based on the work previously discussed, we
first predicted that adults in the Observation condition
would anticipate the arrival of the balls into the bucket, just
as Falck-Ytter et al. (2006) found. If motor representations
are recruited in action anticipation, then the finger tapping
manipulation was predicted to disrupt anticipatory looking.
The working memory condition provided an initial test of
whether anticipatory looking is generally disrupted by a
concurrent cognitive load, or rather selectively vulnerable to
concurrent tasks that tax related motor systems (i.e., manual
motor tasks). However, if neither of these tasks interfered
with the anticipatory looking, then it would suggest this is a
perceptual or automatic behavior.

Data Reduction and Analysis. Three areas of interest
(AOIs) were defined in the movies, and are made visible in
Figure 1. Participants were unaware of these regions of
interest as they were not visible during viewing. The Start
AOI covered the area where the target action began. The
Trajectory AOI covered the area of space the person’s hand
moved through. Finally, the area encompassing the goal, the
bucket, made up the Goal AOI. The dependent measure of
interest was Timing of gaze arrival to the Goal AOI with
respect to the ball’s arrival to the Goal AOI. For each
instance of the target action, data was collected at the
moment the ball began to move at pick-up, until 1000ms
after its disappearance into the bucket (the Goal AOI).
During this time interval, gaze had to fall within the Start
AOI followed by a look to the Goal AOI in order for a
single data point to be included in the analysis. This
inclusion criteria window was based on that used by Falck-
Ytter et al. (2006). The window requirement of an initial
look to the Start AOI ensured that anticipatory looks to the
Goal were in fact anticipatory of the action in question and
were not saccades launched to the goal prior to the action’s
initiation (Engel, Anderson, & Soechting, 1999).

The timing data was obtained by subtracting the time of
the gaze arrival into the Goal AOI from the time of the
ball’s arrival into the Goal AOI. Thus, predictive looking
times (in ms) resulted in positive numbers, and reactive
looking times to the goal resulted in negative numbers.
There were a total of 27 possible data points for each
participant, i.e., three iterations to the bucket in each of the 9
trials. We adopted a conservative subject inclusion criteria
of a minimum of 33% data points obtained in both the
baseline and test trials (two data points in baseline and 7 at
test). In the data presented here, the average number of data
points used to obtain each participant’s mean score for
baseline trials was 5.13, 4.67, and 5.00 (out of 6) for
Observation, Finger-Tap, and WM conditions, respectively.
For test trials, an average of 16.33, 15.27, and 13.73 (out of
21) data points were obtained in the Observation, Finger-
tap, and WM conditions, respectively. The data points were
averaged across events within the baseline and test trials,
resulting in one aggregated baseline data point and one test
trial data point per subject that were used in the analyses.

Results

Accuracy of both the finger tapping and the working
memory tasks was very high (each averaging over 95%-
accuracy), suggesting these were both easy tasks. Initial
analyses did not find any effects of sex, so this variable was
excluded from the subsequent analyses. Therefore, a Trial
Type (baseline or test) x Condition (Observation, Finger-
tap, WM) mixed design ANOVA was conducted on the
timing of Gaze Arrival to the Goal AOI with respect to the
ball’s arrival. The means are displayed in Figure 2. There
was a significant interaction of Trial Type x Condition
(F(2, 42) = 6.17, p < .01. Baseline trials remained stable across
the conditions. However, the average gaze arrival to the
Goal AOI on test trials declined in the Finger-tap condition.

We then conducted a one-way ANOVA of Condition on
Gaze Arrival to the Goal AOI on test trials only, and found
the test trials significantly varied as a function of Condition
(F(2, 44) = 9.14, p < .01. Post hoc analyses (Bonferroni)
revealed the test trials in the Observation condition were
significantly different than those in the Finger-tap
condition, p < .001, but not from the test trials in the
Working Memory condition, p = .28. Critically, the gaze
arrival timing in the WM condition was also significantly
different than in the Finger-tap condition, p < .05. Both the
Observation and WM conditions yielded faster gaze arrival
timings to the Goal AOI than in the Finger-tap condition.

A one-way ANOVA of Condition on Gaze Arrival during the
baseline trials revealed no significant differences.
In conclusion, the mirror neuron system is a potential candidate for the neural system’s modulation of anticipating others’ actions, but more work is needed to explore explicitly goal anticipation as a possible function of this system. We take caution in making the claim that what we investigated here was ‘goal’ anticipation. Although others suggest the MNS is dedicated to the detection of goals and others’ intentions (e.g., Gallese & Goldman, 1998), and Falck-Ytter et al. (2006) claimed ‘goal’ anticipation occurred in their paradigm, we feel more work needs to be done to test the selectivity of anticipation to ‘goal’ objects. We note that this paradigm conflated goals with regular patterns of movement. Thus, the effect may be about action anticipation rather than goal anticipation, per se. It will be important to conduct future studies in which this confound is eliminated.
Acknowledgments

We would like to thank all those who participated in this study. We would also like to thank Michael Dougherty, Claes von Hofsten, and Gustaf Gredebeck for their useful advice in implementing this paradigm. The work presented here was supported by grants to the second author (ALW) from the National Institutes of Health (HD35707) and the National Science Foundation (0634796).

References

