INFLUENCE OF GRAMMATICAL GENDER ON DEDUCTIVE REASONING ABOUT SEX-SPECIFIC PROPERTIES OF ANIMALS

Mutsumi Imai (imai@sfc.keio.ac.jp)
Faculty of Environment and Information Studies, Keio University at Shonan-Fujisawa, Japan

Lennart Schalk (schalk@ifv.gess.ethz.ch)
Institute for Behavioral Sciences, ETH Zurich, Switzerland

Henrik Saalbach (saalbach@ifv.gess.ethz.ch)
Institute for Behavioral Sciences, ETH Zurich, Switzerland

Hiroyuki Okada (h.okada@eng.tamagawa.ac.jp)
Department of Engineering, Tamagawa University, Japan

Abstract
Grammatical gender is independent of biological sex for the majority of animal names (e.g., a male giraffe is grammatically treated as feminine). However, there is apparent semantic motivation for grammatical gender classes, especially in mapping human terms to gender classes. This research investigated whether this apparent motivation in mapping between grammar and biological sex affects deductive inference in German speakers. We identified two contexts in which speakers unconsciously over-generalize the grammar-semantics mapping to make inappropriate deductive inferences about sex-specific biological properties. They tended to erroneously accept deductions when the sex in the premise and the grammatical gender of the target animal agreed. The sex-gender agreement affected the inference even when the sex of the target was explicitly indicated (e.g., die männliche Giraffe). Experiment 2 further suggested that these effects occur only when the gender-marking article accompanied the noun. Implications of the results for linguistic relativity is discussed.

Keywords: Add your choice of indexing terms or keywords; kindly use a semi-colon; between each term.

Introduction
Many languages of the world have a system of grammatical gender, where nouns are assigned to one of the limited number of gender classes (Corbett & Fraser, 2000). Unlike languages that mark gender only semantically (e.g., English), languages with grammatical gender assign gender to all nouns regardless of whether or not referents have a biological sex. The link between gender assignment and conceptual properties of non-human referents has widely been said to be arbitrary (Aikhenvald, 2000; Fox, 1990), as grammatical gender is not relevant to biological sex for a majority of words. For example, in German, the word giraffe is grammatically feminine and elephant is masculine, but it is not the case that all giraffes are female or that all elephants are male. Nonetheless, the feminine article die (FEM) must be applied when one refers to a grammatically feminine noun and the feminine pronoun sie must be used as an anaphoric reference, whether the referent is biologically female or male (e.g., die männliche (male) Giraffe). Here, an interesting question is to what extent speakers are able to separate the biological sex of an animal from its grammatical gender. From the perspective of a speaker of language without grammatical gender, it appears confusing that one has to use the feminine article and the female pronoun even when the giraffe is actually male. Of course, speakers of a language with the grammatical gender system must know that grammatical gender does not directly reflect biological sex. However, are the speakers completely immune to the influence of grammatical gender when they draw inferences about the animal’s sex-specific biological properties? It is possible that the few cases of semantic correspondence between grammatical gender and biological sex may have resulted in an overgeneralization during the process of language acquisition. In German, for example, salient female terms such as woman, lady, mother are grammatically feminine, while salient male terms such as man, boy, father, are grammatically masculine (Natural Sex Principle, cf. Zubin & Koepeke, 1986).

Thus, speakers may falsely generalize this exceptional mapping between gender class and biological sex to words for animated entities in general. This assumption is consistent with Vigliocco and colleagues’ (Vigliocco, Vinson, Paganelli, & Dworzynski, 2005) sex-and-gender-hypothesis, which proposes that a conceptual influence of grammatical gender originates in speakers’ first noticing the correspondence between grammatical classes and conceptual classes. In other words, acknowledging the link between biological sex and the grammatical gender class in the case of some salient human-specific terms leads speakers to develop a general anticipation that even non-human animals from the same grammatical gender class are more similar to one another than animals from different grammatical gender classes.

Most of the previous research has asked whether and to what extent grammatical gender influences speakers’ concepts of entities in terms of typically feminine/masculine attributes assigned to those entities. Konishi (1993) looked at how Spanish and German speakers construe femininity or masculinity of non-animal objects by having them give gender-related ratings of various nouns on a potency scale.
about biological properties even though people consciously (see also Boroditsky, Schmidt, & Phillips, 2003; Flaherty, 2001). However, to our knowledge, the question of whether speakers of a language with grammatical gender are at all influenced by grammatical gender when they make inferences about biological sex-specific properties of animals has not been addressed in the literature.

Importantly, Vigliocco et al. (2005) suggested that the relation between grammatical gender and speakers’ concepts is weaker for languages with more than two gender classes, such as German. Using an odd-one-out categorization task, they in fact found an effect of grammatical gender on Italian speakers’ construal of similarity among animals, but not on German speakers’. However, unlike judgments of abstract similarity among objects, inference about biological sex-specific properties is more directly linked to grammatical gender categories, and hence we might expect the influence of grammatical gender in German speakers in this case.

It is hard to imagine that German speakers are not aware of the motivated link between grammatical gender and biological sex, as human males are clearly mapped to the masculine gender and human females are mapped to the feminine gender. Yet, when thinking about animals at the level of generic species (dog, cat, giraffe, etc.), speakers have to separate grammatical gender and biological sex. Of course, adults speaking a language with grammatical gender must consciously understand that grammatical gender of basic-level animal names is independent of animals’ biological sex. However, it may still be possible that their inference is still affected by the overgeneralization of the syntax-semantics mappings: For example, they may make a false deductive conclusion that grammatically feminine (or masculine) animals in general have a female (or male)-specific biological property.

Deductive reasoning plays a core role in human inference and learning, along with inductive reasoning (cf. Murphy, 2002). If grammatical gender affects deductive reasoning about biological properties even though people consciously understand that grammatical gender is independent of biological sex of animals, this will be taken as support for linguistic relativity.

Provided that such an effect is seen, however, it is important to be able to distinguish two possible mechanisms behind it. The effect may arise within the realm of syntactic processing but not at the conceptual representation of animal kinds. In other words, the effect may be seen only when a speaker processes the gender-marking article or pronoun. The alternative possibility is that the overgeneralized syntax-semantic mapping penetrates into the conceptual level of generic-level animal kinds. If this is the case, the effect should be seen even when generic-level animal names are presented without the gender-marking article.

The present study

We tested German and Japanese speakers on deductive inferences about sex-specific animal properties. The Japanese speakers’ performance served as a baseline because Japanese is a language without grammatical gender. We designed two experiments in such a way that we could identify at what level of processing the relation between grammatical gender and deductive reasoning is found, if it is found at all. In the first experiment, target words for deduction were presented in the singular form with their associated articles marking the gender class of each word. (In German, article + noun phrase can refer to a generic meaning.) In the second experiment, the target words were presented in plural form without any marking of gender class. Participants were asked to indicate whether the deductive conclusion would hold true or not; they were instructed to give a “No” response in cases in which the conclusion was logically indeterminable, in addition to the cases in which deduction would be clearly false.

Five conditions were set up within participants. The Generic Animal Condition was designed to test whether German speakers were more likely to draw a erroneous deductive conclusion when the sex specified for the biological property given in the premise and the grammatical gender class of the target animal’s basic-level name were consistent (e.g., female – feminine) than when they were inconsistent (e.g., female – masculine). Here, the deductive conclusion is logically indeterminable, as the biological sex of the target animal is unknown, and thus, “No” is the correct answer. Nevertheless, German speakers may experience difficulties rejecting the deductive conclusion when the grammatical gender of the target animal agrees with the biological sex specified in the premise. In contrast, it should be easy for Japanese speakers to reject the deduction in this ambiguous case.

In order to test for possible baseline differences in deductive reasoning across the two language groups, we included the Generic-Animal Control Condition. Here, participants were to judge the correctness of the deductive conclusion about a property true for all animals regardless of their sex, while the targets were exactly the same as in the Generic-Animal condition.

The Sex-specified Animal Condition was set up to test whether grammatical gender affects deductive inference in German speakers even when the sex of the animal is explicitly specified in the conclusion. Here, unlike the Generic Animal condition, the target animal’s sex was explicitly specified by the gender-specifying adjective and the specified sex and the grammatical gender of the target
animal was either consistent or inconsistent. Here, the deductive inference should of course be made based on the agreement between the sex in the premise and the target animal’s sex indicated by the adjective. It is interesting to see if consistency between grammatical gender and sex affects German speakers’ judgments in this obvious case.

The Sex-specified Animal Control Condition was included to rule out an alternative explanation for the potential gender effect in the Sex-specified Animal Condition. Provided that the expected effect was obtained, it may also have arisen from the difference in the difficulty in simply processing of the two types of (i.e., grammatical gender-sex specifying adjective matching and mismatching) noun phrases. To disambiguate the two possibilities, the conclusions in this condition were the same as those in the Sex-specified Animal Condition, but the property in the premise was not sex-specific. Finding the gender effect in German speakers in this control condition would indicate that the effect arises at the level of local phrase processing rather than during the deductive reasoning. In contrast, if there is no gender effect in this control condition, but the effect is found in the Sex-specified Animal condition, where the property in the premise is also sex-specific, this suggests that the grammatical gender affects deductive reasoning about a sex-specific property, even when the target animal’s sex is explicitly given.

Finally, the Artifact Condition was included to examine whether German speakers’ deductive reasoning about non-animate entities was affected by grammatical gender. The target object was an artifact whose grammatical gender was either consistent or inconsistent with the sex specified in the premise. The conclusion was logically determinable and should always be rejected. This condition allows us to see how pervasive the influence of grammatical gender on deductive inference about sex-specific biological properties: If the motivated sex-gender mapping is applied even in the realm of entities without sex, this would suggest that the influence of grammatical gender is overarching in German speakers.

Experiment 1

In this experiment, we tested whether there is a relation between grammatical gender and speakers’ deductive reasoning about a sex-specific biological property when the grammatical gender of the target object was explicitly invoked by the gender-marking article.

Method

Participants

Twenty-one native German-speaking undergraduates from Zurich and 17 native Japanese-speaking undergraduates from Tokyo, both from a wide variety of majors, participated for payment.

Design and Materials

As described earlier, there were five within-subjects conditions: Generic Animal, Generic Animal Control, Sex-specified Animal, Sex-specified Animal Control, and Artifact.

In each trial across the five conditions, the premise sentence containing a blank property X was shown, and followed by the target object. In the Generic Animal, Sex-specified Animal, and Artifact conditions, the premise stated that the property X was sex-specific. It said: “All and only male (or female) animal had X inside.” In the two Control conditions, the premise statement was sex-general: “All and only animals had X inside.” Prior to the experiment, the participants were told that X was an internal and important property.

In the Generic Animal Condition, 36 generic level animal names (half grammatically feminine, half masculine in German) that were commonly known to speakers of both languages, were used as targets. Each animal appeared once in the sex-gender consistent trials and once in the inconsistent trials, yielding a total of 72 trials in this condition. As described earlier, the correct response was “No” for all trials, as the deduction was not logically determinable. The same 36 animal names were used in the Generic Animal Control Condition, in which the property given in the premise sentence was general to all animals. Here, of course, the correct response was “Yes” for all trials.

In the Sex-specified Animal Condition, 18 animal names (half grammatically feminine, half masculine) that were not used in the Generic Animal Condition were presented twice, once in a consistent and once in an inconsistent trial. Here, the sex specified in the premise and the grammatical gender of the target animal always matched, but the specified sex and the grammatical gender of the target animal was either consistent (“die weibliche (female) Maus (mouse)”) or inconsistent (“die männliche (male) Mous”) for the “all and only female animals have X inside” premise. The same targets were used for the Sex-specified Animal Control Condition, but here, the property in the premise was not sex-specific (e.g., “all and only animals has X inside”).

In the Artifact Condition, the premise concerned a sex-specific animal property, as in the other two main conditions, but 28 artifact names (half grammatically feminine, half masculine) served as targets. All artifact names appeared once in a sex-gender consistent and once in an inconsistent trial. The “No” response was correct for all trials.

Altogether, there were 208 trials including 90 trials with potential “Yes” responses and 118 trials with potential “No” responses.

Procedure

In each trial, a fixation cross appeared on the screen for one second. The premise statement was then shown for 1.5 seconds, followed by a blank screen for 0.5 seconds. For German participants, the name of the target object accompanied by the gender article was then presented until the participant made a response. For Japanese participants, the target object name was presented alone, without a classifier, as this was judged to be the most natural way of
presentation The participants were asked to indicate whether the deductive conclusion would hold true for the target by pressing a designated key for “Yes” or “No”. After the response, the screen remained blank for 1.5 seconds and the next trial was then started. The presentation order of the 208 trials of all conditions was completely randomized within and across participants.

Results and Discussion

We report the results separately for each condition.

Generic Animal Condition Here, we only analyze the error responses (i.e., Yes responses, see Figure 1). Response times were not submitted to the analysis because of the high error rates in German speakers. As expected, there was a significant Language (German vs. Japanese) X Consistency (sex-gender consistent vs. inconsistent) interaction effect, $F_1(1,31) = 9.1$, $F_2(1,90) = 98.8$, both $p<.01$. Paired t-tests were performed on subject (t_1) and item means (t_2) contrasting the performance in consistent and inconsistent trials across the different conditions. German speakers were more likely to erroneously accept a deductive conclusion when the sex in the premise and the grammatical gender of the target were consistent (53.4%) than when they were inconsistent (29.9%), $t_1(16) = 3.133$, $d = .626$, $p = .006$, $t_2(35) = 13.447$, $d = 2.898$, $p < .000$. No such difference was found in Japanese participants (17.0% vs. 17.2%), $t_1(15) = -.102$, $p = .920$, $t_2(35) = .166$, $p = .869$. However, the performance in German speakers in the Control condition showed that they were in general no poorer in deductive reasoning than Japanese speakers (German:92.5%; Japanese:83.5%), $t_1(31) = 1.821$, $p = .078$, $t_2(70) = 4.597$, $d = .969$, $p < .000$. These results suggest that the grammatical gender effect seen in the Generic Animal condition was not a reflection of generally poor deductive inference on the part of German speakers.

Sex-specified Animal Condition In this condition, both the error rates and response times were submitted to analyses. Again, a significant Language X Consistency interaction effect on the error rates was found, $F_1(1,31) = 8.5$, $F_2(1,34) = 8.9$, both $p<.01$. Unlike the Generic Animal condition, the correct/error deduction was logically determinable according to the agreement or disagreement between the sex in the premise and the specified sex of the target animal. Here, the inconsistent trials, in which the sex specified by the adjective and grammatical gender in the target were inconsistent (e.g., *die männliche Giraffe*), were expected to be more difficult than the consistent trials (*die weibliche Giraffe*). Indeed, German speakers were more likely to draw erroneous deductions in the inconsistent trials (16.1%) than in the consistent trials (3.9%), $t_1(16) = 2.917$, $d = .878$, $p
consistent case (716ms), presented without the gender article. If so, this would
Experiment 1 may vanish when the animal name is
invocation of the article. Alternatively, the gender effects in
gender, the same effects should be observed without explicit
representation of animals per se is affected by grammatical

Consistency effect on either accuracy,
sex-gender consistency effect here emerged in the process
(where the premise was not sex-specific) indicates that the
from that of Japanese speakers in the Control condition
the local level processing of the target phrase due to gender-

agreed.
for the property and grammatical gender of the target animal
a sex-specifying adjective, when the biological sex specified
the target animal’s sex was explicitly indicated otherwise by
difficulty in rejecting the deductive conclusion even when
the target animal’s sex was explicitly indicated otherwise by
sexuated entities as well as to sexuated ones. This is even
ture for a majority of (basic-level) animal names. At the
same time, there is apparent semantic motivation for
grammatical gender classes, especially in mapping human
terms to gender classes. This research investigated whether
this mapping between grammar and biological sex is over-
generalized in deductive inference—a core domain of human
reasoning. We identified two contexts in which German
speakers unconsciously over-generalize this grammar-
semantics mapping to make erroneous deductive inferences.

cases (716ms), $t(15) = -1.274$, $p = .222$, $t(17) = -1.514$, $p = .148$. A similar pattern was found for response times.
German speakers were slower in drawing deductive inferences in the inconsistent case (868ms) than in the
consistent case (716ms), $t(16) = 3.442$, $d = .574$, $p = .003$, $t(17) = 4.986$, $d = 1.522$, $p < .000$, while no such difference
was found in Japanese responses (706ms and 761ms), $t(15) = 1.342$, $p = .199$, $t(17) = 1.969$, $d = .559$, $p = .065$ (Figure 3).
In the Control condition, there was no Language X Consistency effect on either accuracy, $F(1,31) = 0.3$, $F(1,34) = 1$, or response times, $F(1,31) = 0.01$, $F(1,34) = 0.6$.
Thus, even when the biological sex of an animal was explicitly indicated, grammatical gender affected German
speakers’ inferences about sex-specific animal properties.
The fact that German speakers’ performance did not differ from that of Japanese speakers in the Control condition
(where the premise was not sex-specific) indicates that the
sex-gender consistency effect here emerged in the process
deductive reasoning rather than from mere disturbance of
the local level processing of the target phrase due to gender-

Artifact Condition In the Artifact Condition, no
Language X Consistency effect was found, $F(1,31)=1.2$, $F(1,26)=0.9$, both $ps>.1$. In neither language group did
sex-gender consistent and inconsistent trials differ with
respect to the error rates (German: 3.8% vs. 0.4%; Japanese:
1.3% vs. 0.4%) or response times (German: 729ms vs.
727ms; Japanese: 601ms vs. 623ms). Thus, the influence of
grammatical gender on sex-specific biological properties
found in the animal domain did not extend to the artifact
domain.
The results of Experiment 1 showed that German speakers
were not immune to the motivated (but logically orthogonal)
gender-sex mapping when they make deductive inferences
about sex-specific properties of animals. When the
biological sex specified in the premise agreed with grammatical gender of the target animal, they often made a
false deduction that a sex-specific biological property holds
for the target animal in general even though its biological
sex was unspecified. German speakers experienced difficulty in rejecting the deductive conclusion even when
the target animal’s sex was explicitly indicated otherwise by
a sex-specifying adjective, when the biological sex specified
for the property and grammatical gender of the target animal
agreed.
These results naturally lead to a question of whether the
same effects are obtained when the target animal name is
presented without the article. If German speakers’ representation of animals per se is affected by grammatical
gender, the same effects should be observed without explicit
invocation of the article. Alternatively, the gender effects in
Experiment 1 may vanish when the animal name is
presented without the gender article. If so, this would
indicate that the gender effect arises at the level of grammatical processing, but not at the level of the
representation of animals. Experiment 2 was conducted to
disambiguate these two possibilities.

Experiment 2

Method

Participants
Twenty-nine German-speaking undergraduates from
Zurich participated in this study. None of them had
participated in Experiment 1.

Design, Materials, and Procedure
The design, materials and procedure of Experiment 2
were identical to those in Experiment 1 with one exception:
All target words were presented in plural form without
articles marking grammatical gender. In the Generic Animal
Condition, for example, the target “die [FEM] Maus (mouse)”
was now presented as Mäuse (mice) and in the Sex-
specified Animal Condition, “die männliche (male) Maus”
was now presented as “männliche Mäuse”.

Results
In stark contrast to Experiment 1, we found no significant
difference between the gender-sex consistent and
inconsistent trials in any of the conditions on the error rates
or response times (for t_1 and t_2, all $ps > .1$; see Figures 1-3).
When the performance of German speakers in this
experiment was compared to that of Japanese speakers in
Experiment 1, in no condition (including the Generic
Animal and Sex-Specified Animal conditions) was there
any Language X Consistency effect.
The results of Experiment 2 indicate that the grammatical
gender effects found in Experiment 1 arise only when the
speakers see the target animal name with the gender-
marking article. This suggests that it was the gender article
that affected German speakers’ deductive reasoning about
sex-specific animal properties; the effect did not arise
because German speakers’ representation of animals per se
was changed by gender grammar.

General Discussion
Grammatical gender in principle is independent of
biological sex, as grammatical gender is assigned to non-
sexuated entities as well as to sexuated ones. This is even
true for a majority of (basic-level) animal names. At the
same time, there is apparent semantic motivation for
grammatical gender classes, especially in mapping human
terms to gender classes. This research investigated whether
this mapping between grammar and biological sex is over-
generalized in deductive inference—a core domain of human
reasoning. We identified two contexts in which German
speakers unconsciously over-generalize this grammar-
semantics mapping to make erroneous deductive inferences.
First, German speakers tended to erroneously accept deductions when the sex specified in the premise and the grammatical gender of the basic-level name of the target animal agreed. Second, the sex-gender agreement affected the inference even when the sex of the target animal was explicitly indicated: German speakers experienced difficulty in rejecting the deduction when, for example, asked to judge whether a female-specific property would be true for “die[männliche] Maus (male mouse)”. Experiment 2 further suggests that these effects occur only when the gender-marking article was processed. Thus, German speakers seem to project biological sex onto gender-marking articles but not onto the conceptual representation of animals per se. Furthermore, this mapping does not go so far as to affect inferences when the targets are non-sexuated entities.

Researchers investigating the relation between the speakers’ conceptual representation of objects and gender grammar have mostly approached the question in light of whether masculine or feminine images were projected on objects according to the grammatical gender of the name. This research examined the relation between gender grammar and cognitive processes more directly, asking how speakers handle the semantic motivation of gender classes on one hand and the fact that grammatical gender is independent of biological sex in animal terms on the other hand. The finding that German speakers could not help projecting biological sex on gender-marking articles (when they should not) can be taken as some evidence for linguistic relativity (Gentner & Goldin-Meadow, 2003, for an overview). On the other hand, our findings cannot be interpreted to be support for a strong version of linguistic relativity hypothesis, as the effect was not obtained without explicit invocation of the grammatical gender. Some researchers may argue that the gender effect here is only orthogonal), and if this link is strong enough to serve as a basis for inferences about sex-specific properties of animals, then we may conclude that grammatical gender has non-trivial cognitive consequences for these speakers, be it characterized as a “true” linguistic relativity effect or not. This research is important for the literature of language and thought in that it specifies how (i.e., the mechanism) and in what contexts gender grammar might affect cognitive processes rather than simply providing evidence for linguistic relativity (see also Imai & Saalbach, 2010)

Acknowledgement

This research was supported by Ministry of Education grant-in-aid for Scientific Research awarded to Imai and by DAAD Post-Doc Fellowship to Saalbach.

References