Learning Structured Generative Concepts

Abstract

Many real world concepts, such as "car", "house", and "tree", are more than simply a collection of features. These objects are richly structured, defined in terms of systems of relations, subparts, and recursive embeddings. We describe an approach to concept representation and learning that attempts to capture such structured objects. This approach builds on recent probabilistic approaches, viewing concepts as generative processes, and on recent rule-based approaches, constructing concepts inductively from a language of thought. Concepts are modeled as probabilistic programs that describe generative processes; these programs are described in a compositional language. In an exploratory concept learning experiment, we investigate human learning from sets of tree-like objects generated by processes that vary in their abstract structure, from simple prototypes to complex recursions. We compare human categorization judgements to predictions of the true generative process as well as a variety of exemplar-based heuristics.


Back to Table of Contents