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Abstract

We present a Dynamical Integrated Memory Hypothesis
(DIMH) and illustrate its use by arguing that forgetting curves
are emergent properties of dynamical memory that includes
decay and influences of complex context on memory traces.
Because forgetting curves are emergent, it is not likely that a
single simple function will be able to model them. Forgetting
at different time scales is similar because similar dynamics oc-
cur at each scale and not because there is a single underlying
mechanism that produces them. We argue that the dynamical
systems approach is particularly suited for investigating sys-
tems that evolve, such as memory, at a very abstract level.
Keywords: dynamical systems; forgetting curves; memory.

Introduction
Forgetting trends, the initial fast loss of learned material and
its slower decrease later, have been found in almost any mem-
ory task on any time scale (see Wixted & Ebbesen, 1991).
Several mathematical functions can accommodate this gen-
eral trend and therefore there is no consensus on whether
an exponential, power, or some other non-linear function or
combination of functions fits the data better than any other
(e.g., Wixted & Ebbesen, 1991; Brown & Lewandowsky,
2010). We return to this issue later in the text. Based on
these shape similarities, Brown, Neath, & Chater (2007) sug-
gested that the same kind of memory mechanisms may un-
derlie episodic memory over various time scales and tasks:
probed serial recall, free recall, immediate recognition, for-
ward serial recall, absolute identification task, etc.

After reviewing decades of research devoted to finding the
exact shape of the forgetting curve, Brown and Lewandowsky
(2010) reported varying parameters in the Scale Invariant
Memory, Perception, and Learning (SIMPLE; Brown, Neath,
Chater, 2007) and obtaining several generally similar but not
identical forgetting functions. They showed that parts of this
function can be well described with one kind of curve while
other parts of the same forgetting curve are better described
by some other function. The authors concluded that finding
the shape of The Forgetting Function may be an unobtainable
goal.

In what follows, we introduce a dynamical systems per-
spective on this issue which mostly agrees with Brown
and Lewandowsky’s (2010) conclusions about forgetting. We
show how the dynamical system perspective may shed a new
light on memory processes. We ask: Why would there be only
one forgetting curve? The memory system is complex and
dynamic; decay and other influences affect the evolution of
every memory trace and the result is forgetting. The shape
of the forgetting curve is an epiphenomenon of this process;
there is no one static mechanism that always, necessarily un-
derlies the power law or exponential law of forgetting per se.

Dynamical Systems
Dynamical systems are systems that evolve in time, whose
future states are determined by initial states. Compare a dy-
namical system to a static model of changes in the intensity
of some quantity over time. In such systems, history does not
matter in any way. We can determine the value of one or more
dependent variables of the system, based only on the values of
one or more independent variables at a current point in time.

Hotton and Yoshimi (2011) define a dynamical system in
the following way:

Abstractly, a dynamical system is a function of the
form ϕ : S×T → S. This function takes a state s0→ S
(which we think of as an initial condition) and a time
t → T and returns the state the system will be in at
time t starting from state s0. This state can be written as
ϕ(s0, t). To be a dynamical system the function ϕ(s0, t)
must satisfy the two properties:
• There is a time t0 ∈ T such that for all states s0 ∈ S

ϕ(s0, t0) = s0

• For all states s0 ∈ S and all times t1, t2 ∈ T ϕ(s0, t1 +
t2) = ϕ(ϕ(s0, t1), t2)

Dynamical systems in this sense are deterministic, meaning
that there is only one possible future state that follows from
a specific current (initial) state. Here, we consider a specific
class of dynamical systems, systems with memory, in which
the evolution of the system explicitly depends on the past his-
tory of the system. Depending on the shape of a path leading
the system to its current state, it will behave in different ways
in the future.

Memory in general as a dynamical system
Dynamic systems typically are systems of a large number
of elements. In case of memory, these elements are mem-
ory traces. The many elements of a dynamical system interact
with each other in numerous ways, too. These interactions are
very complex because the value of any trace’s intensity in any
point in time influences in a more or less direct way any other
trace’s intensity.

We do not make more specific assumptions about mem-
ory traces beyond the fact that they are the neural substrates
of remembering (Brown, 1958). We present a formal mathe-
matical model of evolution of an intensity of a memory trace.
This model is abstracted from biological networks in the brain
and is even more abstract than connectionist network models
as described by Smolensky (1988). Though the model could
shed light on how memory processes are implemented in the
brain, it is strictly neutral on these issues.
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In general, dynamical systems may be described by one
or more differential or difference equations. This system of
equations only rarely has an exact analytical solution which
allows for detailed mathematical analyses of the system’s be-
havior. Most physical dynamical systems are also very hard
to implement in connectionist networks models due to their
complexity. However, when these kinds of analyses are not
possible, the dynamical systems approach offers other, qual-
itative methods that allow researchers to gain some insight
into the system’s behavior over time. These methods were pi-
oneered by Henri Poincare in late 19th century (Farlow, Hall,
McDill, & West, 2007) and they include analysis of state
spaces, direction fields, attractors, etc.

At this time, we do not use these methods and we rely only
on numerical solutions for simulations of the system’s behav-
ior based on the mathematical model described next in the
text. We refer to all of the above mentioned approaches to
investigation of systems as the dynamical systems approach.
We treat the cognitive operations in episodic memory (learn-
ing and recalling a list of items, for example), as a dynamic
process that can be mathematically modeled by suitable dif-
ferential equations. The model we use in research is based on
a similar procedure that is used in physics to describe trans-
port processes of radiation.

The Dynamic Integrated Memory Hypothesis
(DIMH) in episodic memory

The DIMH assumes that the change of the intensity of a mem-
ory trace depends on the intensity itself, on newly formed
memories (such as those evoked by words presented in a list),
and on the influence of other active memories that make a
context for the evolution. Memory traces are parts of a dy-
namical system and are highly integrated. We think of this
dynamical system in the same way as Bechtel (1997) does:
The system ”can have a form of weak modularity in which
components make different contributions even while sharing
information.”

The DIMH considers time dynamics of memory in mul-
tidimensional parameter space. In what follows, we proceed
with an intuitive description of the model while indicating
the equivalent mathematical relations. To do this, we intro-
duce relevant variables and parameters that will describe ab-
stract objects of the considered dynamic process, and then
we choose a mapping procedure to relate numerical values to
them.

The first notion in the model is that of time, representing
a parameter in the system: The system evolves in time. This
can either be a real physical time t or it may be taken as an in-
dividual’s psychological time. In the latter case their relation
has to be additionally specified.

In the model, the parameter x represents the position of a
concept in memory. For example, one can look at the x as a
result of the following hypothetical experiment:

A person is given a stimulus, say a color red, and is asked
to make a list of somehow associated concepts. The person

is asked to place the associates in a sequence according to
their sense of closeness or distance from the presented con-
cept. In this way it is possible to place some objects to the
left and some to the right of the original concept, depending
on the individual’s sense of mutual relationships between the
associates. For example, colors green and orange may be at
the opposite sides of red.

Thus, we can introduce the parameter x which defines the
position of a concept relative to the initial associate located
at some arbitrarily chosen position x = x0. The quantity we
can now call the distance between two concepts is therefore
given by x0−x. Similarities between concepts are represented
by similarities in their positions. It is obvious that the concept
of distance here only weakly resembles distance in physics
but some assumptions about relative positions and similar-
ity may be reasonably put forward. The use of a one dimen-
sional continuous parameter space to represent a multidimen-
sional memory space is obviously a simplification and only
a model of that space. Strictly speaking, some information
is necessarily lost in doing this but the model is mathemat-
ically more convenient and computationally simplified this
way, while there are justifications for the claim that it is still
functional enough to model data and give insights into mem-
ory processes.

First, one may conceive that even though there are multiple
relations between objects in multidimensional space, in real-
ity we do not use all the information and relations pertaining
to one object, for example, when we are engaged in serial re-
call of words. Therefore, the one dimension that may be used
for a specific modeling task may be thought of as rotation of
a multidimensional space to align the dimension of the model
with a chosen single dimension along which the items differ
in the most relevant way for the current task only. For a dif-
ferent task, the appropriate dimension used may be different.
Second, for the purpose of this modeling, it is sufficient to de-
termine whether the items in the task are facilitating recall of
each other or not. The exact distances are, as mentioned, very
intuitive in this kind of research unlike in, say, physics, but
this is not too much of a simplification for modeling memory.

Hence, it seems reasonable that the described ordering
of inter-item distances along the parameter dimension x in
DIMH is acceptable for modeling, along with careful con-
sideration of choices of elements of the model. As in any
modeling work, one has to be aware of the implications of
assumptions and approximations that are made.

The aim now is to model the time evolution of a mem-
ory trace’s intensity. As the first approximation, we may ac-
cept the initial assumption that the memory intensity I(t;x)
spontaneously decays in time if no additional influences are
present. As is common in numerous natural decay processes,
we can assume the following rate of change:

d
dt

I(t;x) =−α(t;x)I(t;x) (1)

where α(t;x) is known as the decay or attenuation con-
stant for the considered time evolution whose reciprocal is
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the e-folding time. In general, we consider it as both time
and parameter dependent quantity. Related to different ob-
jects, i.e. different positions x, the memory fades by different
amounts and possibly at different rates. The memory attenu-
ation amount or rate may vary in time, too. The specific form
of functional dependence for the α(t;x) could be chosen ac-
cording to the specific task under consideration.

This process is now generalized by introducing an external
local source of excitation which affects the time evolution of
the trace intensity I. This is done by adding an extra term, the
source function S(t;x) to the right hand side of Eq.(1):

d
dt

I(t;x) =−α(t;x)I(t;x)+S(t;x) (2)

This external input may be described by a Gaussian func-
tion to allow for the idea that one specific memory may also
intensify very closely related memories to some extent. Fi-
nally, the influences of the context on the intensity at a spe-
cific position are added and the complete model equation is
written:

d
dt

I(t;x) =−α(t;x)I(t;x)+S(t;x)+h+C (I; t,x) (3)

where:

C (I; t,x)≡
∫ +∞

−∞

dx′
∫ t

0
dt ′W (t, t ′;x,x′)I(t ′;x′) (4)

is the spatial correlation represented by the integration over
x′. The functional dependence W is the weight function de-
termining influences of the temporal and spatial context at
(t ′;x′) on the selected item at (t;x). Its analytical expression
has to be specified in the model either following some exper-
imental results or by logical expectations about how the pro-
cesses should run. For example, in the reported simulation we
assume lateral inhibition at greater distances and excitation at
smaller distances between items. In addition, we assume that
small lateral activations x′ and t ′ contribute less to the activa-
tion in x than greater activations (both negative and positive)
while at the same time there is also a limit to the possible
contribution of the large activations from other positions. We
achieve this by using a Gaussian weighting function for dis-
tance contributions and a log function for intensity contribu-
tions from a site x′ to the site x and from a point at t ′ to the
point t. The third term in Eq.(3), h, is some constant level
of global activation or resting level. We here refer readers to
Erlhagen and Schoener(2002), for details on mathematics and
parameter choices for simulations.

One issue with this model should be noted. The second
integral in Eq.(4) indicates that the system has some explicit
memory of its past history. The weighting function along the
time axis, W (t, t′) covers a finite time interval of an episode
modeled and is of an appropriate shape so that the system
is potentially implementable in the brain. However, as noted
above, this is an abstract model and we are neutral about these
implementation issues.

In sum, the change of the intensity of a memory depends
on the intensity itself, on the added external memories such
as the other words presented in a list, and on the influence
of internal memories that make a context for the evolution.
This mathematical model has been implemented in MAT-
LAB to simulate various experiments in memory research.
External inputs can be presented at different rates in time and
at different positions corresponding to different stimuli and
memories. This allows for simulations of many tasks used in
memory research. Additional constraints on model parame-
ters may be posited this way and the model itself may be a
unifying account of many findings.

Evolution of integrated memory-forgetting

What phenomena may cause lowering of intensity of a mem-
ory trace? Most researchers mention at least one of three
processes-interference, spontaneous decay, and reduced dis-
tinctiveness of older memories but there is no consensus on
which of these are useful for modeling or should be inves-
tigated as natural phenomena. We mention them here very
briefly due to space constraints but we use simulations to ar-
gue that simple decay needs to operate in order to account for
effects of interference and distinctiveness.

It is obvious that spontaneous decay may be responsible
for forgetting. In addition, changes may be due to influences
of other stimuli like proactive interference and retroactive in-
terference. Both refer to an effect that one learned material
has on another one. In retroactive interference what is learned
later influences the memory of previously learned material.
In proactive interference current learning influences how the
next material will be learned (e.g., Underwood, 1945; Post-
man 1961, Waugh & Norman, 1965). Further, currently ac-
tivated context of a memory trace may interfere with it and
thus impede the recall (Anderson, Bjork, & Bjork, 1994). The
influence of the past events also changes based on present
events. Finally, older memories may be harder to distinguish
from one another so their recall is less accurate (Crowder,
1976; Brown et al. 2007).

In DIMH, one source of influence to any point x comes
from the entire memory system. Consider the point at, say,
x = 170, in Figure 1. Intensities of all other points along the x
(at one point in time) are integrated with the one at x = 170.
In addition to this, at the same point in time there may ex-
ist activations from external sources (S). This point also has
a history, so its current value depends on the previous one,
too (decay term, and the integration over time in the main
equation). In other words, if a person has some initial distri-
bution I(t = 0) of memories and the memory evolves, what
guides this evolution is the initial distribution (initial values
for the main differential equation, old knowledge)), temporal
and spatial context (inner dynamical input) and any new input
(new knowledge). Different initial distributions influence the
evolution in different ways and this is most closely related to
the idea of interference in mentioned memory research.
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Simulations
Using the following simulations we are going to argue that
forgetting only happens if complicated dynamics is operating.
The initial distribution is not going to change in time if there
is no influence of any integration from context or if there is
no decay. On the other hand if there is change, it must be the
result of an interaction of the initial distribution and at least
a decay or new inputs (which change the entire inner input to
each x point), if not both. Hence, the forgetting emerges from
the dynamics of interactions in dynamical memory.

Let us consider an evolution of two memory entities. Fig.
1 shows a simple case of evolution of two different and sep-
arate Gaussians. Each Gaussian is the activation of an entity
in memory, which may be thought of in different ways, de-
pending on applications of the model: a set of features, a set
of words, or some other complex knowledge. One may think
about these sets as representing the results of processing at
different time scales. We use a Gaussian function and contin-
uous memory space for mathematical convenience, not from
a cognitive theory of how memories are distributed. Sponta-
neous decay of memory traces, interference from other mem-
ories and other possible sources of activation all integrated
together guide the evolution of intensity of any activation, re-
gardless of how a single Gaussian is interpreted, within this
model. In following simulation (Fig. 1), all terms of the main
equation are non-zero.

Figure 1: Top panel shows current state after evolution, the
distribution over the parameter space x at the end of the evo-
lution (t = 100). Bottom panel shows the evolution from t = 0
to t = 100.

The activations reach their peaks and if there is no new acti-
vation in their positions, they gradually lose intensity. Again,
the intensity of a trace is calculated so that it includes all the
influences of all other points along the x dimension, in ac-
cord with the main general equation. Units for intensity, the
position dimension, and time are arbitrary and do not nec-

essary map directly into familiar units used in experiments.
However, they are on an at least interval scales which makes
the appropriate trends visible. The accuracy of recall perfor-
mance is directly proportional to the intensities.

Greater forgetting means lower magnitudes of remaining
intensities, I(x), after evolution. In Fig. 1, at the time t = 60
more x points have the activation above some level (which
may be interpreted as a threshold for recall) than at the
time t = 90. We here use relatively vague terms to allow
for variations in interpretation in different forgetting research
paradigms while still pointing out important similarities in
dynamics of integrated memory. The amount of forgotten
items, therefore, increases in time as a result of complex dy-
namics.

A role of spontaneous decay
We believe that spontaneous decay is necessary for the dy-
namics presented and perhaps is a necessary phenomenon in
the brain. The following two figures illustrate the role of de-
cay by showing the difference of evolution with and without
the first term of general equation, the spontaneous decay term.
The smaller Gaussian that was previously far away from the
larger one is now very close, they overlap. In addition, an-
other Gaussian is added- it is same as the larger one in Fig. 1
but begins at the same early time as the smaller one in Fig. 1.

Figure 2: Evolution of three Gaussians (x = 320, x = 330,
second x = 330) with decay.

Figure 3: The same three Gaussians but without the decay
term.

Three points evident from these simulations need to be
stressed here. First, if there is no decay operating, the in-
tensity of the larger Gaussian increases quickly over time,
potentially reaching extremely large magnitudes. This prob-
lem is not necessarily present when decay operates. The de-
cay is largely preventing extreme activations because it re-
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duces higher intensities faster and lowers overall activations
(and much more than lateral inhibition) so that new inputs
do not increase the total activation of the system too much.
Altmann & Schunn (2002) made the same points after using
their Functional Decay Model to fit experimental data.

Second, consider Jost’s second law- the rate of forgetting
slows over time (Wixted, 2004). As Brown & Lewandowsky
(2010) illustrated, intuitively we want that if two people re-
member 10 French words today but one of them has learned
them three months earlier and the other one learned them
three days ago, tomorrow they should remember significantly
different amounts because the rate of change for them is dif-
ferent due to the different time passed from initial learning.
This is not possible in the case presented in Fig. 3. If two
people have the same configuration of their memory today,
they will have the same configuration tomorrow regardless
of when they learned the material. This means that under
the same conditions for those two people the activation will
change the same way for both.

In sum, on the one hand, decay in an integrated system,
without new inputs is enough to produce changes in the distri-
bution of memories because different intensities change dif-
ferently. Therefore, the effect of decay, even if it is the only
mechanism of forgetting, is non-trivial. The shape of decay,
say an exponential function, is not necessarily the same as the
forgetting curve.

On the other hand, it may be possible to argue that the in-
terference from other events may mimic decay both in this
and the previous case. We believe that this would be very
hard to do at least in the first case presented above. However,
even without decay processes, the evolution is still guided by
changes in integrated influences of the total context, along
with new inputs, on the initial distribution. In both cases,
therefore, the forgetting curve is an emergent property of a
dynamical system.

Third, temporal distinctiveness, as mentioned above, is not
reduced in this model if decay is not present. For now it is
hard to see how any other model might argue that it is possi-
ble to obtain the reduction unless some other mechanism that
decays this distinctiveness is assumed.

These three points, we argue, mean that spontaneous de-
cay is a necessary component of this model. Without decay,
the model does not fit human data. Based on the preceding
simulations using the DIMH, we further argue that the entire
process of forgetting some initial distribution of active memo-
ries always follows complex dynamics where memory traces
are integrated and most likely both spontaneous decay and
interference from the context play significant roles.

Discussion and conclusions
There are several reasons why we believe DIMH as a novel
approach may be a valuable addition in memory research.

First, it is a new kind of model that considers time evolu-
tion of a memory trace in episodic memory. It seems obvious
that memory processes and their integration are complex and

dynamical and this is why the dynamical system approach
might be particularly useful, especially in combination with
other approaches. Second, the use of differential equations
to describe the change itself, rather than states, points out that
each initial distribution, or old knowledge, develops slightly
differently but that there may be common trends in the behav-
ior. We believe that this stresses the value of simulations that
are not necessary curve fitting and parameter estimation tasks.
These kinds of analyses have their own value and should be
combined with parameter estimation. Third, we show how a
general equation produces behavior that is seen on many time
scales. The parameters of equations on different time scales
may still vary significantly but they produce similar behav-
iors. Most importantly, the emergent forgetting curves are
similar to each other because the dynamics of many mech-
anisms on different time scales are similar and not because
there is one mechanism producing the self similar forget-
ting curve such as the power law (Brown and Lewandowsky,
2010).

The DIMH uses a different level of explanation than most
connectionist networks. Even though the equations of the
mathematical model are very similar to the connectionist
equations, they for the most part do not have the same in-
terpretation. To clarify the way we interpret this model, it is
helpful to consider Smolensky’s (1988) distinction between
three levels of cognitive explanation: neural, sub-symbolic,
and symbolic.

At each of these levels dynamical models can be devel-
oped. A dynamical system at the neural level would describe
a group of interconnected neurons in a region of a brain.
A dynamical system at the sub-symbolic level is something
like a connectionist network- a more abstract approximation
(Smolensky, 1988) of the brain both in terms of structure
and dynamics. It is based on general neural principles but
abstracts from the details. A dynamical system at the con-
ceptual level describes processing of symbols and relations
between them, for example words and concepts in a natural
language. Memory traces described by DIMH should proba-
bly be treated as falling somewhere in between Smolensky’s
symbolic and sub-symbolic levels.

Smolensky (1988) described the sub-symbolic level in re-
lation to the symbolic level as follows:

The interactions between individual units are sim-
ple, but these units do not have conceptual semantics:
they are subconceptual. The interactions between en-
tities with conceptual semantics-interactions between
complex patterns of activity- are not at all simple. [Im-
portantly,] Interactions at the level of activity patterns
are not directly described by the formal definition of a
subsymbolic model; they must be computed by the ana-
lyst.

In a sense, this is what we do. If the model proposed here was
implemented in a connectionist network it would probably
be most closely related to the Adaptive Resonance Theory
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(Grossberg, 1976) where the DIMH is more general in some
aspects.

The DIMH is not the same as Dynamical Field Theory
(DFT). The DIMH and the DFT share some equations and
ideas but are not the same. The DFT was developed by Erlha-
gen and Schoener (see Erlhagen & Schoener, 2002) and was
based on Amari’s mathematical generalization describing a
behavior of a field of interconnected neurons (Amari, 1977).
Mathematically similar models have been used in other areas
of research to describe dynamics of neuronal activities (Wil-
son & Cowan, 1972; Grossberg, 1980), saccadic eye move-
ment (Kopesz & Schoener, 1995), visual cognition (Johnson,
Spencer & Schoener, 2008), and infant motor learning (The-
len, Schoener, Scheier, & Smith, 2000). However, earlier than
work on DFT, Grossberg (1969) had generalized dynamics
of memory and obtained similar equations to our own. In a
sense, we continue this work, making an even more general
model. In addition, while the DFT aims to describe cogni-
tion on connectionist networks levels, the DIMH operates at
the symbolic level, as mentioned. Finally, in Shankar and
Howard (TILT, 2010), the mathematics and modeling of de-
cay of a memory trace is almost identical as ours but the dy-
namics of interactions are more generally described in the
DIMH. The fact that the same mathematical model may be
used to model physical phenomena such as decay, behav-
ior of neurons, and behaviors of memory traces on various
time scales might be a coincidence but perhaps looking into
these similarities may help illuminate how these phenomena
are connected.
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