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Abstract

The top-down guidance of visual attention is one of the main
factors allowing humans to effectively process vast amounts of
incoming visual information. Nevertheless we still lack a full
understanding of the visual, semantic, and memory processes
governing visual attention. In this paper, we present a compu-
tational model of visual search capable of predicting the most
likely positions of target objects. The model does not require a
separate training phase, but learns likely target positions in an
incremental fashion based on a memory of previous fixations.
We evaluate the model on two search tasks and show that it out-
performs saliency alone and comes close to the maximal per-
formance the Contextual Guidance Model can achieve (CGM,
Torralba et al. 2006; Ehinger et al. 2009), even though our
model does not perform scene recognition or compute global
image statistics.

Keywords: visual search; contextual guidance; eye-tracking;
incremental learning.

Introduction

Virtually every human activity occurs within a visual con-
text and requires visual attention in order to be success-
fully accomplished (Land and Hayhoe, 2001). When pro-
cessing a visual scene, humans have to localize objects,
identify them, and establish their spatial relations. The eye-
movements involved in these processes provide important in-
formation about the cognitive processes that unfold during
scene comprehension (Henderson, 2003).

Studies of free viewing (e.g., Einhauser et al., 2008) have
shown that scan patterns on visual scenes can vary greatly be-
tween subjects. On the other hand, the task that participants
have to perform has an influence on visual attention, result-
ing in fixated regions being relatively consistent across par-
ticipants for the same experimental conditions (e.g., Torralba
et al., 2006).

A number of models have been proposed to predict eye-
movements during scene comprehension; they can be broadly
divided into two categories. The first one consists of bottom-
up models exploiting low-level visual features to predict ar-
eas likely to be fixated. A number of studies have shown
that certain features and their statistical unexpectedness at-
tract human attention (e.g., Bruce and Tsotsos, 2006). More-
over, low-level features are believed to contribute to the se-
lection of fixated areas, especially in case of the visual input
that does not provide any useful high-level information (e.g.,
Peters et al., 2005). These experimental results are captured
by models that detect salient areas of visual input and predict
attention in a bottom-up fashion. The best-known example is

the model of Itti et al. (1998), which builds saliency maps
based on color, orientation, and scale filters inspired by neu-
robiological results.

The second group of models assume the existence of top-
down supervision of attention which contributes to the se-
lection of fixation targets. Various types of such supervi-
sion have been observed experimentally. Humans show the
ability to learn general statistics of the appearance, position,
size, spatial arrangement of objects, and their relationships
(e.g., Zelinsky, 2008). They also exploit visual memory dur-
ing scene comprehension tasks (e.g., Shore and Klein, 2000).
Moreover, studies such as those of Chun and Jiang (1998)
show that participants benefit from learning spatial arrange-
ment of the objects in consecutive searches.

A series of studies have also shown the importance of con-
text in scene comprehension. Context not only provides infor-
mation about scene layout and type (Schyns and Oliva, 1994;
Renninger and Malik, 2004), but also about object presence,
location, and appearance (e.g., Oliva and Torralba, 2007; Bar,
2004). A number of models have been proposed to capture
context effects on visual attention; a prominent example is
Torralba et al.’s (2006) Contextual Guidance Model, which
combines bottom-up saliency with a prior encoding global
scene information. A detailed description of the Contextual
Guidance Model can be found in the Background section be-
low.

In this paper, we introduce a model of visual attention that
predicts fixation locations in visual search tasks. Our proposal
is conceptually similar to the CGM, but the top-down mod-
ulation of saliency in our model is based on the memory of
previously found targets, rather than on global scene proper-
ties. Moreover, we show that the knowledge of expected ob-
ject locations can be learned incrementally, and that no prior
is needed to achieve satisfactory results in predicting fixation
positions. This avoids not only an expensive training phase,
but also enables fast adaptation to different data sets, tasks,
and experimental conditions.

Background

The Contextual Guidance Model (Torralba et al. 2006) com-
bines saliency with a model of global scene information (gist)
in a Bayesian fashion. The central quantity computed by the
CGM is the probability that a target object O is present at
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Figure 1: The architecture of the CGM. First, a saliency map is com-
puted for the image. It is then modulated with a contextual prior con-
ditioned on global scene features. The resulting map is thresholded
to select the areas most likely to be fixated.

point X in the image:

1
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Here, L is a set of local image features at X and G is a set of
1

global features representing scene gist. The first term R is
the saliency model. The second term p(L|O = 1,X, G) has the
effect of enhancing the features of X that belong to the target
object. The third term p(X|O = 1,G) is the contextual prior,
which provides information about likely target locations. The
fourth term p(O = 1|G) is the probability that O is present in
the scene. The model is illustrated schematically in Figure 1.
In Torralba et al.’s (2006) implementation, the second and
the forth terms are omitted, yielding:
1
S0 = gy PX10=1.6) @)
This describes contextually modulated saliency S(X) as the
combination of bottom-up saliency and a prior on the likely
location of the target, both conditioned on global features rep-
resenting scene gist. These global features are computed by
pooling local features over 4 x 4 non-overlapping windows;
the resulting vectors are reduced using principal component
analysis.

Model

We propose the Memory Modulated Saliency (MMS) model
of eye-movements in scene comprehension. Like the CGM,
our model combines bottom-up saliency with a top-down es-
timate of likely target positions. In contrast to the CGM, our
model does not assume a correspondence between global rep-
resentations such as scene gist and human behaviour. Instead,
we assume that to estimate likely target positions, viewers
rely on their memory of fixations in previous scenes. This in-
formation is then used to modulate a standard saliency model.
The architecture of the MMS model is shown in Figure 2.
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Figure 2: The architecture of the proposed MMS model. First, a
saliency map is computed for the image. It is then modulated with a
memory map estimated using fixations landing within the targets on
previously seen images. The resulting map is thresholded to select
the areas most likely to be fixated.

As in the CGM, we approximate saliency as the probability
of the local images feature L in a given location based on the
global distribution of these features:

p(L) o e 2L (L)) (3)

Here, with u is the mean vector and X the covariance matrix
of the Gaussian distribution of local features estimated over
the currently processed image. The local features are com-
puted as a set of Gabor filter responses computed over three
color channels for six orientations and four scales, totalling
72 values at each position.

The contextual component of our model is based on memo-
rized information, without access to image statistics or global
scene representations. The MMS model learns a distribution
of target objects positions, and uses this distribution to mod-
ulate saliency. We make the simplifying assumption that this
distribution is Gaussian.! An additional simplification is that
only the distribution of horizontal positions is considered,
while vertical position assumed to be uniform. This is sim-
ilar to an assumption made by Torralba et al. (2006).

Even with these simplifying assumptions, the formulation
of the model is still challenging. The main issue is the mem-
ory depth, i.e., the number of previous images that are taken
into account during the estimation of the target distribution.
Moreover, the Gaussian distribution assumed can only cap-
ture the mean position of the targets. People are able to cap-
ture and exploit more specific information such as position of
interesting areas or the spatial arrangement of objects (e.g.,
De Graef et al., 1990; Chun and Jiang, 1998). Additionally,
memory decay effects and limited size of short term mem-
ory are not modelled by the MMS, even though they have
shown to have an effect on visual tasks (e.g., Davelaar et al.,
2005). Although there is ongoing discussion whether mem-
ory is present in visual search (see, e.g., Horowitz and Wolfe,

! Although the histograms of target positions (see Figure 4) sug-
gest that a simple mixture of Gaussians may be worth investigating.
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Figure 3: The process performed by the MMS model. The incoming
image is converted into a saliency map. The map is then modulated
with a bound calculated based on memorized target fixations. The
resulting map is thresholded to select likely fixation locations.

1998; Hollingworth, 2006) and our assumptions are not en-
tirely consistent with current theories of memory, we believe
they are sufficient, as previous studies have either been con-
ducted on artificial stimuli, or focused on a particular phe-
nomenon rather than investigated memory as the top-down
supervision of low level attentional mechanisms.

Figure 3 presents an example of the computations per-
formed by the model when fed a series of images. In the first
step of each cycle, the saliency map of the image is calcu-
lated and modulated with the learned target position distri-
bution. The resulting modulated saliency map contains the
model prediction for the fixation locations. The distribution
of the target objects for the first images in the sequence is
assumed to be uniform. In the second step, the positions of
target objects found by the participant are estimated. As the
position of a target object can be specified in different ways,
this step requires more detailed explanation. A naive choice
would be to use the center of mass of the object as its position.
This however does not capture the fact that objects are often
relatively large, non-homogeneous entities, and several unre-
lated fixations can fall within their area. Moreover, this would
not use the information provided by saccades and fixations di-
rectly. Hence the position of the object is approximated using
following rules:

1. If a fixation falls within the object area, then the object
position is approximated by the fixation coordinates.

2. If more than one fixation falls into the object area, than
only the first one is taken into account, the other ones are
discarded.

3. If no fixations fall within the object area, then the fixations
within one degree of visual field are considered (with rules
1 and 2 modified appropriately).

4. If no position can be calculated using rules 1-3 then the ob-
ject is assumed not to have been noticed by the participant,
and thus discarded.
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Figure 4: Histograms of vertical coordinates of fixations in visual
search (left) and visual counting (right). The green bars depict per-
centages of fixations on the target objects; the red line shows per-
centages of all fixations.

The approximated target objects positions are used to update
the memorized distribution of the positions, which is then
used to modulate saliency for consecutive images. In the eval-
uation, we will also consider a variation of the model with
separate memories for animate and inanimate targets (dual
memory MMS), as there is some evidence that animacy af-
fects visual attention (Fletcher-Watson et al., 2008; Coco and
Keller, 2009).

Evaluation Experiments
Method

We evaluate the performance of the MMS model on eye-
tracking data collected during a visual counting task. In this
task, 25 participants were asked to count the number of oc-
currences of a cued target object, which was either animate
(e.g., man, woman) or inanimate (e.g., bin). The data set con-
sisted of in 72 photo-realistic scenes (both indoor and out-
door), containing zero to three instances of the target object.
The data was collected using a head-mounted eye-tracker
with a sampling rate of 500 Hz. The images were displayed
with a resolution of 1024 x 768 pixels, subtending a visual
field of approximately 34 x 30 degrees. The data set con-
sists of 54,029 fixations. Moreover, in order to directly com-
pare the performance of our model with the CGM, we used
the data set collected by Ehinger et al. (2009) in a visual
search task, where 14 participants were asked to locate an an-
imate target object, i.e., a pedestrian, in 912 naturalistic urban
scenes, half of which containing the target. The data was col-
lected using an eye-tracker with a sampling rate of 240 Hz,
the images were displayed with a resolution of 800 x 600
pixels, subtending a visual field of about 24 x 18 degrees.
This data set consists of 38,334 fixations.

Figure 4 gives histograms of the vertical coordinates of the
fixations in the two data sets. The histograms show percent-
ages of all fixations (red lines) and percentages of fixations on
the target objects (green bars). We find that these distributions
are similar for both of the datasets. This finding confirms the
hypothesis that visual attention is efficiently allocated to re-
gions which are contextually relevant for the task at hand.
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Analysis

We evaluate the performance of the MMS model against a
simple saliency model and a context oracle, which Ehinger
et al. (2009) suggest to be the upper bound of what can be
achieved with a context-based model such as the CGM. A
context oracle is created by using manually annotated ground-
truth maps. Human participants are asked to mark on the y-
axis the regions where the target object is likely to be found.
Then, these regions are blurred using a Gaussian filter, and
aggregated over the different participants to obtain a single
map for each image.?

In the Results and Discussion section below, we show how
the different models perform by using receiver operating
characteristic (ROC) plots, which indicate the sensitivity
(i.e., true positive rate vs. false positive rate) of a classifier as
its discrimination threshold varies. Moreover, in order to sta-
tistically compare model performance, we calculate the area
under the ROC curve (AUC) of each participant. The AUC
measures the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen neg-
ative one.> We submit AUC means to an ANOVA analysis,
where we compare the performance of the different models
pairwise, e.g., saliency against MMSunrestricted. In the vi-
sual counting data set, we also test the impact of target ani-
macy on model performance. In line with the visual cognition
literature (Fletcher-Watson et al., 2008), we expect models to
perform better on animate targets, as they are more quickly
and efficiently identified than inanimate targets. The identi-
fication of inanimate targets is further complicated by their
larger contextual variability (all animate object were of type
person).

Results and Discussion

Figures 5 and 6 show the ROC curves obtained by the differ-
ent models for the two data sets. Overall, we find that MMS
models have a higher hit rate, i.e., proportion of fixations
on target areas, than saliency in both data sets. This finding
confirms that top-down knowledge is fundamental for model
performance in goal-directed tasks, such as search. Crucially,
we observe that MMS models with small memory perform
better than saliency, especially in the visual search data set,
where we find that both MMS3 (F(1,13) =27.8, p < 0.0001)
and MMS10 (F(1,13) = 192.8,p < 0.0001) perform better
than saliency. We obtain similar results for the visual counting
data, where MMS3 is not significantly different from saliency
(F(1,24) =2.0,p > 0.1), but MMS with a memory of 10
fixations outperforms saliency (F(1,24) = 26.6, p < 0.0001).
The difference observed between the two data sets is due to
the larger variability in the visual counting task, which is in-
troduced by both the animacy of the targets and the variable
number of target occurrences per scene. Animate objects are

2The context oracle information of Ehinger et al. (2009) was ob-
tained from seven participants; for our data set we used five partici-
pants.

3The AUC is equivalent to a Wilcoxon test of ranks, and closely
related to the Mann-Whitney U-test.

Table 1: The performance of the proposed models with respect to the
animacy of the target objects for visual counting task expressed as
mean percentage and standard deviation of the area under the ROC
curve for each experimental subject.

Model Animate Inanimate All

saliency 81.16£1.58 80.67+2.23 80.91£1.68
MMSdual 84.74+1.23 82.92+1.95 83.83+1.38
MMSunrestricted  85.13+1.44 82.43+1.98 83.78+1.52
MMS10 84.61+1.51 81.84+1.90 83.22+1.47

often located at the bottom of the image, e.g., a pedestrian
on the cross-walk, whereas inanimate objects can be found at
a wide range of locations. Moreover, the possibility of hav-
ing more than a single target causes participants to inspect
the scene longer, which increases the variability of visual re-
sponses.

When comparing the MMS models with the context oracle
(i.e., the upper bound of the performance of the CGM), we
find that only MMSunrestricted, i.e., the memory model using
all available fixations, is better than the context oracle, and
only on the visual search data set (F(1,13) =5.4,p =0.02).
We observe an improvement on the visual counting data set
when we separate memories for animate and inanimate ob-
jects, i.e., MMSdual, however the difference with context ora-
cle fails to reach significance (F(1,24) =2.9,p > 0.09). Any
model with smaller memory performs worse than the context
oracle on both data sets.

As argued above, the difference in model performance ob-
served for the two data sets is due to the nature of the task,
as well as the variability of targets, both in terms of their an-
imacy and the number of occurrences in the scene. In the vi-
sual search task, only a few fixations are needed to ascertain
the presence or absence of the single animate target. In vi-
sual counting, however, up to three targets can be present,
which results in longer and more widely distributed fixations.
Furthermore, the variability of visual responses in the visual
counting task is increased by the use of both animate and
inanimate targets. Animate targets are more quickly identified
than inanimate ones (Fletcher-Watson et al., 2008). Moreover,
inanimate targets have larger contextual variability, as all an-
imate objects belonged to the same object class (i.e., person),
which was not the case for inanimate objects. Members of
different object classes vary more in their contextual associa-
tions and hence their likely locations.

These intuitions are confirmed when comparing at the per-
formance of the different models for animate and inanimate
targets in the visual counting task; see Table 1 for AUC val-
ues. We observe that all models have a better performance on
animate targets than on inanimate ones (F(1,24) =40.8,p <
0.0001). The introduction of a dual memory improves the per-
formance when compared to a model with memory of 10 fix-
ations (F(1,24) = 3.9, p = 0.05), but is not sufficient to out-
perform MMS with unrestricted memory (F(1,24) =0.7,p=
0.39). Further investigation with less types of inanimate ob-
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Figure 5: Prediction performance for the visual counting task for MMS with memory of 3, 10 and an unrestricted number of fixations
(MMS3, MMS10 and MMSunrestricted), MMS with a separate memory for animate and inanimate objects (MMSdual), the approximation

of a contextual upper bound (context oracle), and the saliency baseline.

jects and a larger number of images is needed to test whether
the dual memory model is able to improve performance above
the level of the other models presented.

Overall, our results demonstrate that a simple model of vi-
sual search based on the memory of previous fixations can
perform equally good, if not better, than a more complex
model such as the CGM, which integrates bottom-up saliency
with context information conditioned on global scene fea-
tures.

It is also important to note that the MMS model perfor-
mance does not degrade on a visual count dataset consisting
of different scenes with radically different context. Instead
the model still performs better than saliency and comparable
to the context oracle.

Conclusions

We presented a model that predicts fixation locations in visual
search. Our approach is conceptually similar to the Contex-
tual Guidance Model of Torralba et al. (2006), which com-
bines saliency with scene gist and top-down context infor-
mation about likely target positions. To obtain the context
information, the CGM is trained on a large set of images
with manually provided object labels. The Memory Modu-
lated Saliency model that we propose, on the other hand, does
not require offline training and does not involve the calcu-

lation of image or scene statistics. Instead, the MMS model
keeps the last few fixations the participant made in memory,
and uses them to predict likely positions of target objects.

The MMS model performs significantly better than
saliency on the experimental data sets, demonstrating the ben-
efit of memory for the prediction of fixation locations. An
MMS model with unrestricted memory outperforms the the-
oretically possible upper bound of the CGM on the visual
search data (but not on the visual counting data). Unlike the
CGM, the MMS does not require training data, but incremen-
tally learns likely target positions. This means that the model
can adapt easily to new data sets, tasks, and experimental con-
ditions (while the CGM is sensitive to the nature of the train-
ing data).

On a more theoretical level, our results provide an alterna-
tive explanation for the tendency of experimental participants
to only fixate contextually appropriate regions. Rather than
using context information, it is conceivable that participants
simply memorize likely target locations from previous trials,
and use this information to guide their search on the current
trial.
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