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Abstract 

Across a range of psychometric tests, reaction times slow as 
adult age increases. These changes have been widely taken to 
show that cognitive-processing capacities decline across the 
lifespan. Contrary to this, we suggest that slower responses 
are not a sign of processing deficits, but instead reflect a 
growing search problem, which escalates as learning 
increases the amount of information in memory. A series of 
computational simulations show how age-related slowing 
emerges naturally in learning models, as a result of the 
statistical properties of human experience and the increased 
information-processing load that a lifetime of learning 
inevitably brings.  Once the cost of processing this extra 
information is controlled for, findings taken to indicate 
declines in cognitive capacity support little more than the 
unsurprising idea that choosing between or recalling items 
becomes more difficult as their numbers increase.  We review 
the implications of this for scientific and cultural 
understanding of aging. 

Keywords: Learning; Language; Memory; Psychometric 
Testing;  

The Age of Tithonus 
More and more people live longer and longer lives. 

Outside of 18 countries the UN describes as ‘outliers’ 
(Watkins et al, 2005), increased life expectancy and 
declining birth rates are raising median ages in populations 
across the globe. By 2030, 72 million Americans will be 
aged 65 or older, a twofold increase from 2000. The world’s 
population is more aged than ever before in history, and its 
rate of aging is increasing. 

People are clearly living longer; it is less clear that this is 
a blessing. In Greek mythology, Tithonus was the mortal 
lover of Eos, goddess of the dawn. While asking Zeus to 
make Tithonus immortal, Eos forgot to mention “eternal 
youth,” dooming Tithonus to an eternity of decrepit 
babbling. The psychological and brain-sciences endorse the 
Tithonean view of aging, portraying adulthood as an 
extended period of mental decline: memories dim; thoughts 
slow; problem-solving abilities diminish (Naveh-Benjamin 
& Old, 2008; Deary et al, 2009); and each year, the onset of 
cognitive decrepitude is set ever younger (Salthouse, 2009; 
Singh-Manoux et al., 2012). One crumb of comfort is that 
older adults are, on average, happier (Charles & Carstensen, 
2010), although in the circumstances, this might be taken as 
further evidence of their declining mental prowess. 

In what follows, we show how the slowing response 
speeds that are taken as evidence of “cognitive decline” in 
adults emerge naturally in learning models (Baayen et al, 
2011) as knowledge increases. These models, which are 
supported by a wealth of psychological (Ramscar et al, 
2010) and neuroscientific (Schultz, 2006) evidence, 

correctly identify greater variation in the cognitive 
performance of older adults, successfully predicting that 
older adults will show more sensitivity to fine-grained 
differences in test items than younger adults. The models 
run (and can be rerun) on computers, eliminating the 
possibility that aging hardware influences their 
performance, which instead reflects the information-
processing costs incurred as knowledge increases. Once the 
demands of processing this extra information are taken into 
account, it becomes clear that much of the evidence for age-
related declines in cognitive capacity better supports the 
idea that information processing costs rise as the amount of 
information in a system increases. 

The problem with “processing speed” 
Findings from a range of psychometric tests suggest that 

the rates at which the mind processes information increase 
from infancy to young adulthood, and decline steadily 
thereafter (Salthouse, 2011). Increasing reaction times are a 
primary marker for age-related cognitive decline (Deary et 
al, 2010), and are even considered its cause (Salthouse, 
1996), yet they are puzzling. Practice improves speed and 
performance on individual cognitive tasks at all ages (Dew 
& Giovanello, 2011). Since we get more practice using our 
cognitive capacities as we age, why does our performance 
on tests of them decline? 

The answer lies in the way that psychometric tests neglect 
learning, and its relationship to the statistical patterns 
characteristic of human life. Learning is a discriminative 
process that serves to locally reduce the information 
processing costs associated with various aspects of 
knowledge and skill (Rescorla & Wagner, 1972).  However, 
age increases the range of knowledge and skills individuals 
possess, which increases the overall amount of information 
processed in their cognitive systems. This extra processing 
has a cost. 

Learning and the long tail of linguistic experience 
 Statistically, the distribution of human experience is 

highly skewed: Much of our day-to-day life is fairly 
repetitive, involving a small repertoire of common 
occurrences, such as reading the newspaper and going to 
work.  At the same time, we experience a far more diverse 
repertoire of infrequent or even unique occurrences (we 
rarely read the exact same newspaper twice). When data is 
distributed like this, comparisons of means are often 
meaningless. Consider the problem of remembering 
birthdays: We are reminded of the birthdays of family 
members on an annual basis, and this usually makes us 
expert at remembering them. However, as we move through 
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life, we also learn about other birthdays. Sometimes we hear 
these dates only once, such as when we attend a party for 
someone we barely know. As each new birthday is learned, 
our mean exposure to all the birthdays we know will 
decline, and the task of recalling a particular birthday will 
become more complex. Recalling six hundred birthdays 
with 95% accuracy need not imply a worse memory than 
recalling six with 99% accuracy.  

Standard psychometric tests do not take account of the 
statistical skew of human experience, or the way knowledge 
increases with experience. As a result, when used to 
compare age groups, they paint a misleading picture of 
mental development. This can be demonstrated most clearly 
in relation to language. Language is a central aspect of 
cognition, its statistics are more readily quantified than other 
aspects of human experience, and all psychometric tests 
involve some linguistic information processing.   
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The frequencies of the 1000 most common words in the 
Corpus of Contemporary American English plotted by rank. 

Importantly, linguistic distributions are skewed at every 
level of description (Baayen, 2001). Consider the 
relationship between word types (e.g., dog) and tokens (how 
often “dog” occurs; Figure 1). In any large sample of 
English, a few words occur very frequently (the, and), such 
that half of a typical sample comprises tokens of only 100 or 
so high-frequency types. The relative frequency of these 
types decreases rapidly (the most-frequent word may be 
twice as frequent as the second-most), while frequency 
differences between types decrease as their relative 
frequency declines. This means that the other half of a 
typical sample is composed of ever-fewer tokens of a very 
large number of types, with ever-smaller frequency 
differences between them. Typically, around half of these 
types occur just once. 

This is a very long-tailed distribution: 49% of the 425 
million tokens in the Corpus of Contemporary American 
English (COCA; Davies, 2009) come from the 100 most-
frequent word types; the remaining 51% of tokens represent 
over 2.8 million word types. Although individual low-
frequency types are, by definition, rare, their distribution 
makes the chances of encountering a low-frequency token in 
any given sentence extremely high (Möbius, 2003). This 
distribution ensures that any English speaker learns only a 

fraction of its total vocabulary, and that vocabularies grow 
steadily across the lifespan. However, the tests used to 
measure cognitive decline assume that vocabulary size is 
age-invariant in adults (Spearman, 1927; Carroll, 1993; 
Bowles & Salthouse, 2008), an assumption seemingly 
confirmed by psychometric vocabulary measures, which 
suggest that vocabulary growth in adulthood is marginal 
(such that slight increases are only reliably detected in meta-
analyses; Verhaeghen, 2003). 

Psychometric vocabulary measures are virtually 
guaranteed to register these results, because they attempt to 
extrapolate vocabulary size from sets of test words. These 
tests, which are “normed” on the knowledge of 
schoolchildren, are heavily biased towards frequent word-
types (Raven, 1965; Heim, 1970; Wechsler, 1997). 
Unfortunately, while extrapolation is feasible for frequent 
words, for the millions of low-frequency word-types, 
knowledge of one randomly sampled word does not predict 
knowledge of another. Since the distribution of types 
ensures that adult vocabularies overwhelmingly (and 
increasingly) comprise low-frequency words, it follows that 
reliably extrapolating their size or growth from a small test 
sample is mathematically impossible (Baayen, 2001). 

Simulating the effects of vocabulary learning on 
information processing 

Most infants are sensitive to all the fine-grained phonetic 
discriminations made by the world’s languages. As they 
learn a native vocabulary, this sensitivity to non-native 
phonetic distinctions diminishes (Werker & Tees, 1984). 
Rather than indicating that cognitive decline begins in 
infancy, this loss in sensitivity can be seen as an inevitable 
result of learning. In discriminative learning models, the 
values of initially undifferentiated sets of cues are shaped by 
experience, which drives the discovery of cue values that 
best predict a learning environment (Rescorla, 1988). 
Because this process involves learning to ignore 
uninformative cues, it can explain why decreasing 
sensitivity to uninformative phonetic information goes hand 
in hand with increasing knowledge about informative 
phonetic distinctions (Ramscar et al, 2010).   

The learning component of the model we use to simulate 
the effects of experience on reading works in precisely this 
way. It is an extension of the Naive Discriminative Reader 
(NDR; Baayen et al, 2011), a two-layer network in which 
letter unigrams and bigrams serve as input cues, and lexical 
items serve as outcomes. The values of these cues are 
initially undifferentiated, and are set competitively as the 
model learns to predict words from the letters it ‘reads.’  In 
the NDR, every predictive cue is linked to each lexical 
outcome to form a set of subnets. The cue-weights in these 
subnets are set by the equilibrium equations of the Rescorla-
Wagner learning rule (Danks, 2003), and are completely 
determined by the distributional properties of the model’s 
training corpus. Simulated latencies derived from these 
weights accurately capture a wide variety of empirical 
effects in reading (Baayen et al, 2011). 
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To model the influence of experience on different 
populations, the NDR was modified to make it sensitive to 
the physical and informational consequences of knowledge 
growth. Given that the amount of activation a given cue 
receives from the perceptual system remains constant over 
time (Attwell & Laughlin, 2001), this modification keeps 
the total amount of activation spreading from cues to 
outcomes equal to the amount of activation arriving at them. 
Analogous to the principle of conservation of electric 
charge, this means that as vocabulary increases, and each 
cue becomes connected to an increasing number of 
outcomes, the amount of activation arriving at any given 
outcome decreases.  Given a vocabulary of size V, the 
network support for any item i is proportional to ai /V where 
ai is the activation an item receives from the cues in the 
input. 

This modification also accounts for the effects that an 
increased number of outputs have on information processing 
in neural systems (Hentchel & Barlow, 1991; supplementary 
materials). Shannon’s source coding theorem shows that the 
smallest coding scheme for V words requires, on average, 
H(V) bits. Since V determines the length of a message in a 
given code, the effective channel capacity C of an ensemble 
of neurons decreases as code complexity increases and the 
amount of redundancy in signals across the network 
decreases (Hentchel & Barlow, 1991). We denote these 
information costs by f(V), where f is an unknown non-
decreasing function expressing the coding and signaling 
costs in a vocabulary of size V. 

The response latency (RT) associated with reading 
(operationalized as reaction times to speeded judgments on 
written words) is modeled as a weighted sum of these 
components: 

€ 

iRT = 1w iV /a + 2w f (V )+c  

with c a constant denoting the time required for response 
execution. 

To simulate the effects of vocabulary-growth on adult 
reading, two NDR networks were trained on data drawn 
from the Google Trigrams Corpus (a large, naturalistic data 
set). The first network ‘read’ 500,000 word-trigram tokens, 
simulating reading to age 21, the typical age for “young 
adult” participants in studies; the second ‘read’ 3,000,000 
word-trigram tokens,3 simulating reading to age 70 (the 
typical age for “old adults”). Consistent with our analysis of 
the way linguistic distributions influence vocabulary 
growth, the old model acquired a much larger vocabulary: 
32,536 word types, compared to the young model’s 21,307 
(Figure 2). These growth estimates are very conservative: 
the Trigram Corpus excludes trigrams with less than 40 
occurrences, thereby omitting around 50% of the word types 
in the complete Google Corpus. Even with this constrained 
input, vocabulary expansion was far from asymptote, even 
after 5 million trigram tokens. 

To examine the models’ ability to simulate age-related 
reading differences, we compared their projected reading 
times for 2,904 English words to empirical latencies from 
older (mean age 73.6) and younger (21.1) readers for the 

same items (Balota et al, 1999). The empirical data exhibit 
the expected effect of age: mean reaction times are 163 ms 
shorter for younger than older adults. Simulated reaction 
times mirror this difference, with an average difference of 
167 ms. 

 
Figure 2. Empirically observed vocabulary growth after sampling 
from the Google Trigrams Corpus.  

Figure 3. Left panel: fit of a generalized additive model to the 
simulated response latencies from the old and young models. Right 
panel: fit of a generalized additive model to the empirical response 
latencies from young (mean age: 21.1) and old (73.6) adults 
(Balota et al, 1999). 

The models also correctly predict an important qualitative 
difference in the empirical word-frequency effect. It is well 
established that lexical decision responses are slower for 
lower- (e.g., “whelp”) than higher-frequency words 
(“where”).   This overall effect of frequency is present for 
both young and old adults (Figure 3; right panel). However, 
while frequency effects asymptote at higher frequencies in 
both models, they only level off at the lowest frequencies in 
the younger model, a pattern that is also observed in the 
empirical data: older adults are far better attuned to 
frequency variations in the lower range of the test-set than 
younger adults. 

These results can be explained by considering the way the 
models learn in more detail. In learning, weights on the 
links between the cues and outcomes are adjusted in two 
ways: They are strengthened whenever a cue and outcome 
co-occur; For example, the link between the bigram WH 
and the lexical target WHERE is strengthened when 
“where” is encountered in reading, and the link between 
WH and WHELP is strengthened when the “whelp” is 
encountered. Conversely, links are weakened when cues 
occur but outcomes do not.  
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1  BLASH 
2  SCHNOOK 
3  LETCH 
4  ZOUNDS 
5  JAPE 
6  SOUSE 
7  WHIG 
8  FILCH 
9  RHEUM 
10  PARCH 

11  CROME 
12  GIBE 
13  LISLE 
14  FLAYS 
15  SPLOTCH 
16  VELDT 
17  SLOE 
18  CONK 
19  FRAPPE 
20  SKULK 

21  TWERP 
22  THWACK 
23  DAUNT 
24  RETCH 
25  GYP 
26  YAWL 
27  FLUB 
28  STANCH 
29  PAUNCH 
30  JOWL 

31  WHELP 
32  SHUCK 
33  MOOCH 
34  JELL 
35  GROUCH 
36  AWN 
37  MANSE 
38  WRACK 
39  HOOCH 
40  FLECK 

41  BLEAT 
42  CHIVE 
43  WHIR 
44  CROON 
45  TAMP 
46  BOSH 
47  RILE 
48  BLANCH 
49  LILT 
50  JEER 

 
Table 1. The 50 lowest frequency items in the set used to test the models and the older and young adults; BLASH has the lowest frequency 
of these items, and JEER the highest. As can be seen, many of the letter bigrams in this set of words are comparatively rare in English. 
 
Thus when “where” is encountered, WH occurs without 
WHELP, weakening the link between WH and WHELP. 
The distribution of high-frequency words results in their 
being encountered frequently, at a fairly constant rate over 
time. This will consistently reinforce the link between WH 
and WHERE, and consistently weaken the link between WH 

In contrast, low-frequency words occur sporadically, so 
the link between WH and WHELP is reinforced far less 
(and the link between WH and WHERE weakened less). 
These imbalances result in “selection pressures” on word 
types that are reflected in the distribution of orthographic 
(and phonetic) cues across lexical items (see Zipf, 1949): 
high-frequency test items are both shorter (t(2901) = -10.58, 
p < 0.001) and have higher mean bigram frequencies 
(t(2901) = 8.98, p < 0.001) than low-frequency items. This 
means that, on average, low-frequency words contain both 
more cues, and more rare cues (Table 1). Although rare cues 
have relatively high values in small vocabularies, they are 
vulnerable to competition as vocabularies grow: newer 
vocabulary items also have low frequencies, and are more 
likely to contain the same rare cues.  

All the predicted empirical effects were replicated in an 
analysis of a second, independent dataset (Figure 4). 

 
 
Figure 4. Average percentile RT differences (old – young) for the 
naming latencies of 2,820 Single Syllable words (Yap et al, 2011) 
by young (mean age: 22.6) and old adults (73.6), plotted against 
the words’ log frequency in the Google 1-gram corpus, and a 
generalized additive model fit to the RT differences. As can be 
seen, the difference between older and younger readers’ RTs 
increases as word frequency decreases. 

Modeling ‘decline’ in a non-lexical task 
To examine whether the relationship between information 

load and response time also holds for “non-lexical” tests, we 
considered the letter classification task (Posner & Mitchell, 
1967), a standard non-lexical psychometric test in which 
two letters are presented in upper or lowercase (A, a, D, d, 
E, e, R, r, H, h) and participants judge whether they are 
alphabetically the same or different. Older subjects are 
typically slower than younger subjects in this task, a finding 
that is straightforwardly replicated in the NDR models once 
the coupling between letters and abbreviated meanings is 
accounted for (e.g, H for entropy, R for a statistical 
programming environment, r for correlation, etc.). The 
network complexity function f(V) in (1), which models 
response latencies as a function of the activation of the 
meanings of both letters in a letter pair, predicts longer 
latencies for older subjects as compared to younger subjects. 
In short, because the older model has a larger system of 
outcomes, it has more information to process, making 
“accessing” a letter harder, and reaction times 
concomitantly slower (see also Ramscar et al, 2010).  

Psychometrically, letter classification is often described 
as an “information-processing” measure, and older adults’ 
longer response times are taken as evidence of declining 
information-processing capacity. Yet information theory—
which defines the workings of information-processing 
system—is, at heart, a set of methods for formalizing the 
uncertainty in distributions (be they bits of code, or 
vocabulary items; Shannon, 1948). Information is a property 
of systems, and processing demands are measured in 
relation to them (MacKay, 2003). In letter classification, the 
system comprises the task, a participant, and, crucially, what 
that participant knows. Because psychometric tests neglect 
this knowledge, they are formally incapable of measuring 
information-processing in this task. 

Lexical knowledge and paired-associate learning 
Wherever vocabulary size increases with experience, this 

increased knowledge predicts   increasing processing costs 
and slower responses in psychometric tasks.  As a 
consequence, slower latencies reflect learning, not 
“decline.”  Interestingly, this interaction between 
experience, vocabulary-size and response speed can also be 
seen in comparisons of monolingual and bilingual picture-
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naming (Gollan et al, 2008): the response latencies of 
young-bilinguals more closely resemble older-monolinguals 
than younger-monolinguals or older-bilinguals. Notably, 
slower response times and increased tip-of-the-tongue rates 
are not taken as evidence of cognitive decline when 
observed in young-bilinguals (Gollan & Acenas, 2004), but 
are instead seen to reflect the demands of processing the 
larger vocabularies that bilinguals inevitably learn. 

The finding that bilinguals experience increased tip-of-
the-tongue rates raises a question: could the same systemic 
effects of learning that account for increased lexical 
processing latencies explain age-related change in memory 
measures, such as Paired-Associate Learning (PAL; a 
psychometric measure of people’s ability to learn and recall 
new information)? In PAL, e.g., the subtest of Wechsler’s 
Memory Scale (WMS; desRosiers & Ivison, 1988) 
participants have to learn more or less arbitrary pairings 
between word cues (e.g., baby; jury) and responses (cries; 
eagle). Although item-level performance is highly variable 
(Figure 5), older adults’ overall PAL performance is slower 
and less accurate, and it has been suggested that aging 
causes encoding (Gilbert, 1941; MacKay & Burke, 1990) 
and retrieval processing deficits (Burke & Light, 1981). 

 
 
Figure 5.  Mean performance by item for 100 older (age 60-69) 
and 100 younger (20-29) adults on forms 1 and 2 of the WMS-
PAL subtest (desRosiers & Ivison, 1988). As in the lexical 
decision and naming data, the relationship between old and young 
PAL performance is nonlinear: again, older adults exhibit a more 
marked ability to discriminate between ‘harder’ (unrelated) and 
‘easier’ (related) items than younger adults. 

There is, however, no reason to think PAL performance 
should be age-invariant. Long-established principles of 
associative learning predict that well-known items should be 
harder to learn as Cues (w1) than newer items (Rescorla & 
Wagner, 1972). Likewise, newer Response (w2) items 
should support better learning than well-known, predictable 
items (Kamin, 1969): w1-w2 pairs ought to become harder to 
learn when w1 and w2 occur independently at high rates 
(Rescorla, 1968; compare jury-eagle to baby-cries). 

To examine whether age-related PAL differences simply 
reflect learning, we analyzed the relationship between the 
age-related variance in the performance of a large sample 
adults on the WMS-PAL subtest (desRosiers & Ivison, 
1988), and the factors that determine w1-w2 learnability. In a 

regression analysis of item score differences (mean young – 
mean old), w1 predictability (log frequency; t=-4.063, 
p<0.001), the relationship between w2 and w1 predictability 
(log(w2 frequency) / log(w1 frequency); t=-2.935, p<0.01) 
and actual w1-w2  co-occurrence rates (log Google 
frequency; t=6.773, p<0.0001) accounted for more than 
75% of the variance in item performance between 20-29 and 
60-69 year-olds (F(3)=16.432, r=.87, p<0.0001).  

All things being equal, the relative learnabilty of w1-w2 
pairs can be estimated from w1-w2  co-occurrence and 
background rates. All things are not equal, however: Older 
adults have more experience, and learnability is a matter of 
experience. Accordingly, w2 words will become more 
predictable the more they occur independently of w1, and w1 
words will become less informative the more they occur 
independently of w2; in each case, experience will make w1-
w2 learning harder. A natural, predictable consequence of 
this is that PAL performance should increasingly reflect the 
distributional properties of the w1-w2 items as experience 
grows: if co-occurrence rates are low, a lifetime of learning 
that jury is uninformative about eagle should make learning 
jury-eagle harder; whereas high co-occurrence rates will 
reduce background rate effects, making baby-cries easier for 
older adults to learn relative to jury-eagle.  

 
Figure 6.  Mixed-effects slope estimates for the three learnability 
predictors and mean item performance of old (60-69) and young 
(20-29) adults in the WMS-PAL subtest (desRosiers & Ivison, 
1988). All predictor effects and interactions in the model are 
significant (see supplementary materials), and all slopes (except *) 
are significantly different from 0 (t=>2). Older adults are more 
sensitive to background rate information (negative slopes) than 
young adults and, as the magnitude of the slopes shows, the overall 
performance of older adults reflects a far more systematic 
understanding of the English language. 

A mixed-effects analysis of w1-w2 item scores by age 
confirmed the accuracy of this prediction (Figure 6). For 
each predictor, the magnitude of the slope for the older age 
group is greater than that for the younger age group, 
indicating that older subjects bring more lexical experience 
to the task.  Consistent with our earlier findings, older 
adults’ PAL performance reflects their greater knowledge of 
(and sensitivity to) the distributional properties of w1-w2 
words, whereas younger adults’ less varied performance 
reflects their more limited knowledge of them. As we noted 
above, the statistical properties of human experience makes 
comparing means invidious: in this case, it seems that high 
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mean PAL performance is a measure of ignorance, not 
“intelligence.” 

Learning and Cognitive Maturation 
These results suggest that older and younger adults’ 

performance in psychometric testing largely reflects the 
same cognitive mechanisms, confronted with the task of 
processing different quantities of information. The 
performance of older adults on these tests is evidence of 
increased knowledge, not declining processing capacity.  

When discussing these conclusions with colleagues, a 
question often arises: “Learning seems to predict linear 
patterns of change, but cognitive decline seems to kick in 
around age 60 or 70: how do you explain this?” To explain 
why, we first note that as people age, they encode less 
contextual information in memory (Naveh-Benjamin & Old, 
2008). Although this has been taken as evidence that the 
processes that “bind” contextual information in memory 
decline with age, learning theory predicts that experience 
will increasingly make people insensitive to context, 
because ignoring less informative cues is integral to 
learning. 

Learning is also sensitive to the environment, and its 
predictions change with it: If a common environmental 
change—e.g., retirement—was to systematically reduce the 
variety of contexts people typically encounter in their lives, 
learning theory predicts that the amount of contextual 
information they learn will also drop, as the background 
rates of cues in remaining contexts rise. If these same people 
were to increasingly spend their time in environments where 
cues already have very high background rates (e.g., family 
homes), this effect will be exacerbated. In other words, 
because learning inevitably reduces sensitivity to everyday 
context, retirement is likely to make memories harder to 
individuate and more confusable, absent any change in 
cognitive processing, simply because it is likely to decrease 
contextual variety at exactly the time when, as a result of 
learning and experience, the organization of older adult’s 
memories needs it most. 

Learning can explain both the apparent changes in older 
adults “cognitive performance” around retirement-age, and 
the fact that these changes are not detected in testing. 
Similarly, the neglect of learning in the study of cognitive 
aging makes it highly likely that, like Tithonus, many of our 
beliefs about cognitive decline are myths. This does not 
mean that the diseases that can undermine cognition in old 
age are also mythical: However our understanding of these 
diseases can only be increased by a better understanding 
lifelong learning, and its sensitivity to the environment.  
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