Neural-network Modelling of Bayesian Learning and Inference


We propose a modular neural-network structure for implementing the Bayesian framework for learning and inference. Our design has three main components, two for computing the priors and likelihoods based on observations and one for applying Bayes' rule. Through comprehensive simulations we show that our proposed model succeeds in implementing Bayesian learning and inference. We also provide a novel explanation of base-rate neglect, the most well-documented deviation from Bayes' rule, by modelling it as a weight decay mechanism which increases entropy.

Back to Table of Contents