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Abstract

Whether scientists test their hypotheses as they ought to has in-
terested both cognitive psychologists and philosophers of sci-
ence. Classic analyses of hypothesis testing assume that peo-
ple should pick the test with the largest probability of falsi-
fying their current hypothesis, while experiments have shown
that people tend to select tests consistent with that hypothesis.
Using two different normative standards, we prove that seek-
ing evidence predicted by your current hypothesis is optimal
when the hypotheses in question are deterministic and other
reasonable assumptions hold. We test this account with two
experiments using a sequential prediction task, in which peo-
ple guess the next number in a sequence. Experiment 1 shows
that people’s predictions can be captured by a simple Bayesian
model. Experiment 2 manipulates people’s beliefs about the
probabilities of different hypotheses, and shows that they con-
firm whichever hypothesis they are led to believe is most likely.

Keywords: confirmation bias; rational analysis; hypothesis
testing; Bayesian inference.

How shoulda scientist seek evidence to help her find the
hypothesis that explains a phenomenon? Does this differ
from how peopledo seek evidence? Popper (1935/1990) ar-
gued that scientists ought to follow the strategy offalsifica-
tion, seeking evidence most likely to falsify their current the-
ory. Interested in whether people adhere to this strategy, Wa-
son (1960) investigated how people intuitively test their the-
ories. In the classic 2-4-6 task, participants were asked toun-
cover a relational rule after being told that one triplet,(2,4,6),
conforms to the rule. The true rule, increasing numbers, sub-
sumes most potential rules (e.g., two more than the previous
number) with every triplet predicted by a potential rule also
being valid under the increasing numbers rule. Thus, the true
rule can only be discovered by testing numbers that are not
predicted by your current best guess at the rule (negative test
strategy or NTS). Rather than follow the NTS, participants
choose to test triplets predicted by their current hypothesis
(the positive test strategy or PTS) even though it is impossi-
ble to find the true rule this way. For example, many partic-
ipants in the 2-4-6 task followed the PTS by entertaining the
hypothesis that each number is two more than the previous
number and testing sequences consistent with this hypothe-
sis, such as(1,3,5). The tendency to follow the PTS is just
one instance of what has become known as theconfirmation
biasor the general human tendency to interpret and seek ev-
idence fitting their current theory differently from evidence
against it (Klayman & Ha, 1987).

In this paper, we outline a set of environmental conditions
under which the PTS is actually an optimal strategy. Previ-
ous work has identified settings in which the PTS or NTS is
more likely to yield falsification (e.g., Klayman & Ha, 1987).
However, this normative analysis produces predictions that
are quite different from human behavior. For example, peo-

ple still use positive tests in situations where negative tests are
more likely to yield falsification, such as those encountered
in Wason’s (1960) experiment. We complement this analysis
by showing that the PTS is more likely to yield falsification
and optimally reduces uncertainty provided the world is in-
herentlydeterministic(i.e., given the rule is true, there is only
one possible next outcome). This suggests we might explain
use of the PTS as the result of an assumption of determinism
on the part of human learners, consistent with recent results
showing that children assume that many causal relationships
are deterministic (e.g., Schulz & Sommerville, 2006; Gel-
man, Coley, & Gottfried, 1994). This emphasis on the struc-
ture of the environment parallels similar strategies pursued in
other rational analyses (e.g., Oaksford & Chater, 1994).

The plan of the paper is as follows, first we introduce the
task of predicting the next event in a sequence. Under the as-
sumption that hypotheses are deterministic (given a sequence
of events, a hypothesis predicts only one next event), we
prove that the PTS is optimal in many situations. Next, we
define a Bayesian model of sequence prediction for numeri-
cal stimuli, and use a behavioral experiment to show that it
captures human predictions. If people are seeking evidence
optimally, then they should choose to verify the next num-
ber predicted by the hypothesis they believe is most likely.
In a second experiment, we demonstrate that changing a per-
son’s beliefs about the probability of hypotheses affects their
evidence-seeking strategy. We conclude by discussing how
our results relate to previous work.

Sequence prediction and hypothesis testing
Given a sequence of events, how do we predict what will oc-
cur next? For example, suppose you see a woman outside of
an airport and then at the security checkpoint. How likely is
it that she stays at the security checkpoint (she is a security
guard) or walks to a gate (she is a passenger or crewmember)?
Clearly, the probability of each possible next event depends
on the probability of the hypotheses explaining the observed
events and the probability of the next event under these hy-
potheses. Since there is no means of predicting the next event
with complete certainty, this is an inductive task.

This problem can be expressed in terms of probability the-
ory. Given a sequence of previous events or objects (~x =
(x1, . . . ,xi−1)) the probability of a next event (xi) is

P(xi |~x) = ∑
h

P(xi |h,~x)P(h|~x) (1)

whereP(xi |h,~x) is the probability of the next event under hy-
pothesish, andP(h|~x) is the posterior probability of that hy-
pothesis given the sequence~x. This posterior probability can
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be obtained from Bayes’ rule, with

P(h|~x) =
P(~x|h)P(h)

∑h′ P(~x|h′)P(h′)
(2)

being the normalized product of the likelihood,P(~x|h), and
the prior probability of the hypothesisP(h). For the above
example, the probability that the woman is a security guard
instead of a passenger depends on the relative probabilities of
a security guard and a passenger going to the security check-
point and the base rates with which passengers and security
guards appear at the airport.

Suppose we now meet the woman’s husband, and get to
ask him one (yes or no) question about where she will be
next. What is the best question to ask in order to discover
her role (i.e., whether she’s a security guard, passenger, or
crewmember)? This is equivalent to a scientist determing the
best question to test her hypothesis. In the remainder of the
section, we show that there is a simple answer to this question
provided our hypotheses aredeterministic, allowing only one
value forx given~x (ie., that there is only one place the woman
will go for each hypothesis about her identity). In this case,
the positive test strategy (asking about the event that corre-
sponds to the most probable hypothesis) is optimal. Thus, the
best question is to ask her husband is whether she will be in
the location that our best guess about her identity predicts.

We will use two methods to identify what question we
should ask. The first is the probability of falsification - asking
the qeustion that gives us the highest probability of falsifying
our current hypothesis (Popper, 1935/1990; Klayman & Ha,
1987). The second is a measure based on information theory
(Klayman, 1987; Oaksford & Chater, 1994). According to
information theory, theentropy

H(P(x)) = −∑
x

P(x) log2P(x)

measures the amount of randomness in a probability distri-
bution P(x). For example, the entropy of a fair coin is 1
(.5log2 .5+ .5log2 .5 = 1) and the entropy of a two-headed
coin is 0 (1 log21+ 0log20 = 0, where 0log20 is defined to
be 0). This matches our intuition that we are far more cer-
tain of the outcome from the toss of a two-headed coin. The
amount of information gained from observing an outcome is
the difference between the entropy of the distribution char-
acterizing our beliefs before and after that observation. Thus,
the information gained about the a set of hypotheses for which
our current beliefs are described by the posterior distribution
P(h|~x), given a sequence of objects from performing a testc
and learning its outcomer, is

I(P(h|~x),P(h|~x, r,c)) = H(P(h|~x))−H(P(h|~x, r,c))

whereP(h|~x, r,c) reflects the information provided by(r,c),

P(h|~x, r,c) =
P(r|h,c,~x)P(h|~x)

P(r|c,~x)

with
P(r|c,~x) = ∑

h

P(r|h,c,~x)P(h|~x)

being the probability of the outcomer from the testc given
our previous observations~x. In sequential prediction, the out-
come of a test is either that the queried event is next in the se-
quence or not. The probability of a positive response (r = +)
to a queryc is simply the probability thatc is the next event
in the sequence, which depends onh and~x.

Since the outcome of a test is unknown prior to performing
the test, the information gain cannot be used directly. Instead,
we define the optimal test to be the test that has the largest
expected information gain(EIG). The optimal choice ˆc is

ĉ = argmax
c

Er|c,~x [I(P(h|~x),P(h|~x, r,c))]

whereEr [ f (r)] = ∑r f (r)P(r) is the expectation of the func-
tion f with respect to the distributionP. This reduces to

ĉ = argmax
c ∑

r
[H(P(h|~x))−H(P(h|~x, r,c))]P(r|c,~x)

= argmin
c ∑

r
H(P(h|r,c,~x))P(r|c,~x)

being that which minimizes uncertainty after the response.

The optimality of positive test strategies
Instead of directly deriving general results on the usefulness
of positive test strategies, we first consider the problem with
simplifying assumptions. We narrow our hypothesis space to
deterministic hypotheses which all make different predictions
for the next event in the observed sequence. Under these con-
ditions, every test is a positive test for some hypothesis, and
a positive response from such a test yields conclusive verifi-
cation of the tested hypothesis, while a negative response fal-
sifies the tested hypothesis but is ambiguous about all other
hypotheses. We show that testing the event predicted by thea
posteriorimost probable hypothesis maximizes the probabil-
ity of falsifying that hypothesis and the EIG.

Using maximizing the probability of falsifying the current
working hypothesis as our normative standard (Klayman &
Ha, 1987), the analysis is simple. The probability that test-
ing the choicec, consistent with hypothesishc, falsifies that
hypothesis is 1−P(hc|~x). If you want to falsify a particular
hypothesis, then it is best to test the choice it predicts since
1−P(hc|~x) is the sum of the probabilities of all other hy-
potheses. Consequently, to falsify the current hypothesis, you
should test the choice it predicts and thus the PTS is optimal.

The same result holds when we take maximizing the EIG as
our goal. As shown above, maximizing the EIG is equivalent
to minimizing the expected entropy of the posterior distribu-
tion informed by the results of the test. As the hypotheses all
predict different events next, if we learn thatc is in fact the
next event, than we know with certainty that its correspond-
ing hypothesis is true, resulting in an entropy of 0. Thus, the
expected entropy reduces to the product of the posterior prob-
ability that the tested hypothesis is false and the entropy of the
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renormalized posterior without the tested hypothesis

H

(

P(h|~x)
1−P(hc|~x)

)

(1−P(hc|~x))

wherehc is the hypothesis corresponding to the choiceC.
This simplifies to

−(1−P(hc|~x)) ∑
h6=hc

P(h|~x)
1−P(hc|~x)

log2
P(h|~x)

1−P(hc|~x)

= − ∑
h6=hc

P(h|~x) log2P(h|~x)+ ∑
h6=hc

P(h|~x) log2(1−P(hc|~x))

The first of the two sums is the entropy of the posterior with-
out the contribution from the tested hypothesis, and the sec-
ond simplifies because the log portion does not vary over the
sum. Consequently, we can rewrite this quantity as

H(P(h|~x))+P(hc|~x) log2P(hc|~x)+(1−P(hc|~x)) log2(1−P(hc|~x))

Since the entropy of the posterior does not depend on the
choicec, it does not influence the optimal choice. This means
that the choice that maximizes the EIG is

ĉ = argmin
c

P(hc|~x) log2 P(hc|~x)+(1−P(hc|~x)) log2(1−P(hc|~x))

which is the negative entropy of a distribution in whichhc

and its alternatives are the only two possible outcomes.
The entropy of a distribution is concave (there is one global

maximum) and is maximized when the distribution is uniform
(Cover & Thomas, 1991). Thus, the optimal strategy is to
make the choice corresponding to the hypothesis with poste-
rior probability closest to 0.5. It is easy to show that this is
the hypothesis with highest posterior probability.1 There are
two cases. If all probabilitiesP(h|~x) are less than 0.5, then the
hypothesis for whichP(h|~x) is greatest is clearly the closest
to 0.5. If the probability of some hypothesis is greater than
0.5 there is only one such hypothesis, and the distance of the
probability of all other hypotheses from 0.5 will be at least
as great, as these hypotheses divide the remaining probability
mass. Thus, confirmation – choosing to test the hypothesis
with highest posterior probability – maximizes the EIG.

We can now generalize this analysis for the EIG, relaxing
the assumption that all hypotheses make distinct predictions
for the next event. In the general case, every choicec parti-
tions the hypothesis space into two sets. LetH c be the set
of hypotheses that predictc as the next event andH c̄ be the
set of hypotheses that do not. The set that makes the wrong
prediction will be eliminated, receiving probability 0, and the
set that makes the right prediction will have their posterior
probabilities renormalized. The analysis then proceeds simi-
larly to the derivation given above, replacinghc with H c, with
P(H c|~x) = ∑h∈H c P(h|~x), although there is an extra wrinkle
produced by the fact that confirmation does not guarantee an
entropy of 0. This analysis shows that the optimal test is that
which producesP(H c|~x) closest to 0.5. If there is a single

1More precisely, choosing the hypothesis with highest posterior
probability is always at least as good as choosing any other hypothe-
sis, with equality holding in the case where just two hypotheses have
non-zero posterior probability.

hypothesis with posterior probability greater than or equal to
a half, then confirming that hypothesis (which is the current
best hypothesis) is the optimal strategy. If this is not the case,
confirming the current best hypothesis can be suboptimal, as
it may be possible to construct an amalgam of hypotheses that
agree on somec and have posterior probabilities that sum to
a value closer to 0.5. However, such circumstances are un-
usual, and our result thus indicates that in many cases where
we believe there is a rule governing a sequence of events, the
positive test strategy is optimal.

A Bayesian model for numerical sequences

The analysis of the positive test strategy outlined above re-
lies upon the assumption that we can accurately characterize
people’s predictions about sequences in terms of Bayesian in-
ference. In the remainder of the paper, we develop a Bayesian
model of a particular kind of sequence prediction – prediction
of the next element in a sequence of numbers – and use this
model to test this basic assumption, and to show that people
are sensitive to the relative probabilities of different hypothe-
ses in exactly the way that this account predicts.

The domain of our model of sequence prediction is num-
bers. We assume that the sequence of observed numbers,
~x = (x1, . . . ,xi−1), is generated from some relational rule
h → ~x, and that people try to identify this rule in order to
make accurate predictions. Our model is based upon the con-
cept learning framework presented in Tenenbaum (1999) and
Tenenbaum and Griffiths (2001), a version of which was ap-
plied to a simple “number game” similar to our task. In this
model, a hypothesis or concept is a set of numbers. Although
this model captures people’s generalization judgments (e.g.,
given 8 is in the set, what is the probability that 16 is in
the set?), it does not allow for inferences about sequences
of numbers. Thus, we extend this Bayesian model to make
predictions about sequences. The goal of the model is not to
capture all the intricacies of human sequence prediction, but
rather to be a reasonable approximation that we can use to
understand human hypothesis testing.

Instead of defining the hypotheses as sets of numbers, each
hypothesis is a rule fromkh previous numbers to the possi-
ble next numbers of the sequence. The likelihood assigns a
probability distribution over next numbers given the previous
kh observed numbers. We divide the types of hypotheses into
two separate categories: deterministic and non-deterministic.
A deterministichypothesis, such as increasing odd numbers,
has only one correct next number and conforms to the fol-
lowing form: h(xi−1, . . . ,xi−k+1) : Xk → X. For example, the
likelihood function for the sum of the last two numbers rule
(Fibonacci sequence,kh = 2) is:

P(xi |h,xi−1,xi−2) =

{

1 if xi = xi−1 +xi−2

0 otherwise

Conversely, more than one number may conform to anon-
deterministichypothesis. For example, the following likeli-
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hood function models the increasing numbers (kh = 1):

P(xi |h,xi−1;ν) =

{ 1
ν+1 xi ≥ xi−1∧xi −xi−1 ≤ ν
0 xi < xi−1

whereν is the largest increase possible from the last number.
These hypotheses are partitioned into seven different sets

of the same rule type:×C+K, sum of the last two numbers,
pairwise mixtures of×C+K rules, repeat the lastkh numbers,
the i-th power (fori = 2 and 3), primes, and the random rules
(decreasing, increasing, and random numbers). The×C+K
hypotheses cover any rule of the formxi = Cxi−1 + K, and
we consideredC∈ {−3, . . . ,3} except zero,K ∈ −5, . . .5. In
total, this yields 135 hypotheses. The prior probability ofall
rules of a given type is uniform within that set, and the prior
probabilities of the rules of different types are free parame-
ters. Since rules are based on the values of preceding num-
bers, we also need a scheme for generating the initial numbers
in a sequence. We do this by samplingx0 from a distribution
assigning probability 1/|1+ x0| to the positive and negative
integers, and subsequent initial numbers from the same dis-
tribution centered around the preceding number. This acts as
an implicit penalty against rules for whichkh is high, as they
require more draws from this distribution.

The model defined in this section provides all we need to
compute the posterior distribution over hypotheses given ase-
quence of numbers (Equation 2) and consequently to predict
the next number in a sequence (Equation 1). Experiment 1
examines how well this model characterizes the predictions
that people make about sequences of numbers.

Experiment 1: Predicting predictions
In this experiment, participants were asked to predict the
next number for five sequences, each generated by a differ-
ent rule. There were five patterns, four deterministic and one
stochastic, each expressed in four sequences of increasing
size (length ranging from three to six). The four determin-
istic patterns were chosen to illustrate participants’ andthe
model’s ability to make judgments on simple and complex
rules and when the given sequence was ambiguous as to the
underlying rule. The stochastic pattern was chosen to demon-
strate both participants and the model make sensible related
judgments when the generating rule is not deterministic.

Methods
Participants A total of 146 undergraduates participated in
the experiment for course credit or a free ice cream voucher.

Stimuli Five relational rules were tested: repeat the
last number (1,1,1,1,1,1 - simple), sum of the last two
numbers (1,1,2,3,5,8 - complex), increasing odd num-
bers (3,5,7,9,11,13 - ambiguous), increasing prime num-
bers (3,5,7,11,13,17 - ambiguous), and increasing numbers
(2,5,17,33,94,100 - stochastic).

Procedure The four subsequences of each rule were ran-
domly distributed across four different surveys, with each

survey containing one subsequence of each rule. Each par-
ticipant received one survey, with approximately 11 partic-
ipants seeing each survey. To provide the strongest test of
our model, we asked participants to write down what they
believed the next number would be, without imposing any
constraints on this choice. Participants were told that these-
quences may have been generated by a simple relational rule
which may not be deterministic, with “decreasing numbers”
being given as an example, and asked to make predictions for
each sequence independently.

Results

As shown in Figure 1, the model and human prediction distri-
butions are in close correspondence. The predictions shown
for the model were obtained by optimizing the prior proba-
bility of the different hypothesis types to fit the human data,
but are somewhat robust to variation in the prior. The cor-
relation between the sets of predictions isr = 0.87. Since
the increasing numbers pattern is random, both the partici-
pant and model predictive distributions are diffuse, lowering
this correlation. The predictive distributions are nearlyiden-
tical for the four deterministic sequences, withr = 0.98. The
estimated prior probabilities of the seven types of hypothe-
ses are:×C+ K is 0.85, sum of the last two is 10−4, mix-
tures of×C+ K is 1.5×10−4, repeat the lastkh numbers is
4.5×10−5, i-th power is 0.05, primes is 6.9×10−7, decreas-
ing is 0.008, random is 0.006, and increasing is 0.09.

Having verified that a Bayesian model can capture human
sequence predictions, we can use it to test how human hy-
pothesis testing is affected by prior knowledge. The analysis
of optimal hypothesis testing given above predicts that people
should seek to confirm the hypothesis that they assign high-
est posterior probability. To test this prediction, Experiment
2 manipulated the prior probability of different types of hy-
potheses to see if we could induce people to change which
hypotheses they sought to confirm.

Experiment 2: Manipulating confirmation

Methods

Participants A total of 67 undergraduates participated in
exchange for course credit. Participants were split into three
conditions, with 22 participants in the×C+K condition, 22
participants in the “sum last two” condition, and 23 partici-
pants in the control condition.

Stimuli In order to establish the priors in different sequence
prediction environments, participants in the×C+K and “sum
last two” conditions were trained on 100 sequences of num-
bers. The training sequences in the×C+ K condition had a
high prevalence (87%) of sequences generated by rules of the
form ×C+ K and no sequences generated by summing the
last two numbers, and vice versa in the “sum last two” con-
dition (with 89% of sequences conforming to the target rule).
Test selection was probed with 21 sequences consistent with
both the sum of the last two numbers and the×C+ K rule,
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Figure 1: Results of Experiment 1. Each row of plots shows thepredictions for one sequence as the number of elements
increases from 3 to 7 across the columns. The five rules used togenerate the sequences are (from top to bottom) repeating ones,
sum of the last two numbers, increasing odd numbers, increasing odd prime numbers, and increasing numbers. The scale of the
increasing numbers is different and may omit some values of both distributions for visual clarity.

shown to participants in all conditions. For example, one se-
quence,(3,6,9), can be interpreted as×1+ 3 or the sum of
the last two numbers (3+6 = 9).

Procedure In the training phase, participants were asked to
predict the next number in the sequence and the underlying
rule, and then told whether their responses were correct. The
group of participants in the control condition were not trained
any sequences and only were given the test portion of the ex-
periment. In the test phase, participants were told that they
could pick one number and find out whether that number was
the next in the sequence, being told to select the number that
would help them figure out the underlying rule the best. They
were asked to write down both what they thought the rule was
and their number choice. The experiment was administered
on a computer with instructions given by the experimenter.
The participants were also provided a calculator.

Results

If participants are sensitive to the prior probabilities ofdif-
ferent environments, then they should choose to confirm the
same rule as their training condition. Since the priors in both
the control (established by the priors learned from Experi-
ment 1) and×C+K conditions are similar, our main concern
is whether participants are more likely to confirm the sum of
the last two rule when trained in the “sum last two” condition.
For all of the test sequences, the model predicts confirmation

of the current hypothesis, which in turn is determined by the
prior probabilities established by the training condition.

The responses produced by the participants for all se-
quences were grouped into three categories:×C+ K, sum
of the last two numbers, or other. Two coders, one blind
to the hypothesis and both blind to condition, assigned the
rules people selected as belonging to these three groups, with
high inter-rater reliability (κ = 0.90). As the model pre-
dicts, participants were sensitive to the environment given in
their training condition and changed their responses appro-
priately (see Figure 2). Although participants did not con-
firm the appropriate hypothesis for every sequence as the
model predicts, the variation was statistically significant. Par-
ticipants in the “sum last two” condition tested the sum of
the last two numbers significantly more often than partici-
pants in either the×C+K condition (χ2(2) = 9.71, p< 0.01)
or the control condition (χ2(2) = 196.25, p < 0.01). Ad-
ditionally, the responses for the sum of the last two num-
bers and control conditions were not significantly different
(χ2(2) = 1.11, p > 0.55). Thus, when testing their theories
and hypotheses, people are sensitive to the prior probabili-
ties in the environment, choosing to confirm the hypothesis
rendered most probable by that environment.

Discussion and Conclusions

We have shown that the PTS is optimal under the assump-
tion that the hypotheses under consideration are determinis-
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Figure 2: Results of Experiment 2, averaged over participants
in each group. Error bars show one standard error.

tic, using both maximizing the probability of falsificationand
reduction of uncertainty as measures of test utility. Our ex-
periments provide the pieces of evidence needed to connect
this result to human behavior. In the first experiment, we
showed that a Bayesian model of sequential prediction ac-
curately characterizes human expectations. Our formal anal-
ysis predicts that changing the relative prior probabilities of
two hypotheses that could both have generated ambiguous se-
quences should change the test that people choose. In the sec-
ond experiment, we demonstrated that people behave in a way
that matches this prediction, selecting tests that confirmed the
hypothesis most probable in each environment. Thus, partici-
pants are not blindly testing the same choice regardless of the
environment, but are identifying the most probable hypoth-
esis and then systematically seeking to confirm that hypoth-
esis. We now consider how these results relate to previous
work on the confirmation bias, and their implications for un-
derstanding why people might exhibit such a bias.

Klayman and Ha (1987) proposed exploring the role of the
set of possible hypothesis on testing; however, few papers
have used constrained hypothesis spaces to analyze hypoth-
esis testing. One exception is Nelson and Movellan (2001)
who explored directly applying the Bayesian generalization
model and EIG to a task similar to the 2-4-6 task. In their
task, hypotheses were sets of numbers and the goal was to
find the hypothesis most likely to have generated a given set
of numbers. The participants were allowed to ask whether
one other number followed the rule. Nelson and Movellan
(2001) found that in cases of high posterior uncertainty, the
choices predicted by EIG matched the choices given by con-
firmation; however, in cases of low uncertainty, the choices
predicted by EIG conflicted with choices given by confir-
mation (and human participants). One representive example
where human responses deviate from EIG is for the given set
{60,80,10,30}, the working hypothesis is multiples of ten,
but multiples of five is also possible. In this case, analogous to

the original 2-4-6 task, the alternative hypothesis (increasing
numbers for Wason (1960), multiples of five for Nelson and
Movellan (2001)) picks a superset of the outcomes consistent
with the most probable hypothesis. This is where our analysis
differs from previous work: by assuming that hypotheses are
deterministic, we require them to pick only a single predic-
tion and thus no hypothesis strictly subsumes another.

Our analysis indicates that the positive test strategy is opti-
mal in a particular setting: when hypotheses are deterministic
in their predictions. This is precisely the setting that people
face in our numerical prediction task, where hypotheses are
relational rules. However, in other settings – namely those
where one hypothesis can be a superset of another – the PTS
is suboptimal. In the spirit of previous rational analyses of
confirmation (Oaksford & Chater, 1994), we propose explain-
ing the fact that people pursue a suboptimal strategy in these
non-deterministic settings as a consequence of assumptions
about the structure of their environment – in our case, that
rules are deterministic. If we live in a deterministic world,
then choosing tests that confirm our expectations might be a
simple adaptive strategy for this environment. We are in the
process of developing a means of confirming this hypothesis.
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