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Abstract

We introduce a connectionist version of the Syntagmatic
Paradigmatic model (Dennis, 2005) and train it on subcorpora
drawn from the gigaword corpus. Decaying syntagmatic repre-
sentations of the words to the left and right are used to estimate
the paradigmatic associates of a word. The pattern of paradig-
matic associates is then combined with an order independent
associative representation of the surrounding words to predict
the word that will appear in a given slot. The best performing
version of the model produced a perplexity of 28.3 on a vocab-
ulary of 5006 words, significantly lower than Good Turing and
Kneser Ney ngram models trained under the same conditions.
Furthermore, we changed parameters and lesioned compo-
nents to isolate which properties of the model are critical to its
performance. Online update of the weights - a kind of priming
- allows the model to track short term contingencies and signif-
icantly improves performance. When we removed the paradig-
matic and associative layers performance dropped, when we
removed just the associative layer performance dropped and
when we removed the right context from the syntagmatic and
associative layers performance also dropped - suggesting that
all of the hypothesized components of the model are crucial to
its performance.
Keywords: syntagmatic, paradigmatic, sentence processing,
perplexity, connectionist

Introduction
Dennis (2005) introduced the Syntagmatic Paradigmatic
model as a general account of verbal cognition. It is based
on the distinction between syntagmatic associations that oc-
cur between words that appear together in utterances (e.g.
run fast) and paradigmatic associations that occur between
words that appear in similar contexts, but not necessarily in
the same utterances (e.g. deep and shallow, cf. Ervin-Tripp,
1970). The model has been used to explain a number of
phenomena including long term grammatical dependencies
and systematicity (Dennis, 2005), the extraction of statisti-
cal lexical information (syntactic, semantic and associative)
from corpora (Dennis, 2003a), sentence priming (Harrington
& Dennis, 2003), verbal categorization and property judg-
ment tasks (Dennis, 2005), serial recall (Dennis, 2003b), and
relational extraction and inference (Dennis, 2005, 2004).

Previous instantiations of the model have used string edit
theory (SET) as a way of capturing the notion of paradig-
matic association. While SET has been a fruitful mechanism

with which to investigate the properties of the general theo-
retical framework, it has proven inadequate in some respects.
In particular, it does not scale well to large corpora, primarily
because it proposes the sentence as the main unit of analysis.
In this paper, we will present a connectionist version of the
SP model that operates at the word level and demonstrate that
it is able to to predict when words will be used with some
precision.

The Model

Output Units

Associative Units Paradigmatic Units

Syntagmatic Units

(before)

Syntagmatic Units

(after)

Figure 1: The syntagmatic paradigmatic model

Our connectionist implementation of the SP model has five
main sets of units arranged into a two layer architecture. The
initial syntagmatic inputs consist of two sets of units each of
which contain a unit for each word in the vocabulary of the
system. The syntagmatic units (before) represent the words
that appear before a given word within the sentence, while
the syntagmatic units (after) represent those words that ap-
pear after the word. To capture the temporal order of the
words, the activations of these units decay in an exponential
fashion (cf. ordinal models of serial order such as the primacy
model, Page & Norris, 1998). If a word is repeated then its
new activation is simply added to any existing activation as
follows:
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st,wi,be f ore = ∑
i<t

λe−λ(t−i) (1)

st,wi,a f ter = ∑
t<i

λe−λ(i−t) (2)

where wi is the word that appears in the ith timestep, t is the
current timestep, and λ is the rate of the exponential decay.
This form of representation is efficient, only requiring 2V
units where V is the size of the vocabulary, generalizes nat-
urally as the length of dependencies increases and as Ding,
Dennis, and Mehay (2009) argue provides implicit constraints
that may explain the relative ease of processing of different
kinds of embeddings.

To produce the activations of the paradigmatic units a
multinomial logistic regression model is used. The syntag-
matic representations are multiplied by a weight matrix and
the softmax nonlinearity is applied as follows:

pt,w =
eWtwst

∑ j eWt jst
(3)

Weights are then updated with a simple gradient descent rule:

Wt+1, j = Wt, j + γ(1− pt, j)st , j = wt

= Wt, j− γpt, jst , j 6= wt (4)

where γ is the learning rate and wt is the word that appears in
the corpus at time t.

The paradigmatic layer estimates the probability that a
word could have fit into the slot defined by the surrounding
words, that is, it is an estimate of the paradigmatic associates
of the current word.

The associative layer codes adjacent words in an order in-
dependent fashion and allows the model to capture relational
regularities (e.g. the active to passive transform). The asso-
ciative inputs are coded as follows:

at,wi = ∑
t 6=i

λe−λ|i−t| (5)

Finally, the output units are again calculated using the
multinomial logistic regression model (see Equation 3) and
the same gradient descent training rule is applied (see Equa-
tion 4). Although the architecture has two layers these are
trained independently. There is no backpropagation of error.
Furthermore, in all of the simulations reported in this paper a
single iteration through the training set was performed.

A Simple Example
To understand the logic of the model, consider the following
simple example. Suppose we trained the model (λ = 0.1, γ =
0.1, 2000 iterations) on the following corpus:

john loves mary
mike loves sue
bert loves ellen

gary loves bob
adam loves eve
todd loves sarah
barak loves michelle
who loves sue ? mike
who loves ellen ? bert
who loves bob ? gary
who loves eve ? adam
who loves sarah ? todd
who loves michelle ? barak

and then present it with the question “who loves mary ?
xxx”. Any model that relies exclusively on sequential infor-
mation will be unable to correctly predict that “john” should
fill the “xxx” slot, because “john” only appears at the start of
a sentence. With the SP model, however, we get the following
paradigmatic patterns for each of the words in the sentence:

who: who 92 loves 03 john 01
loves: loves 93 who 02
mary: loves 13 who 13 michelle 10 sarah 10

eve 10 bob 10 ellen 10 sue 10 ? 07
mary 01 barak 01 todd 01 adam 01

?: ? 37 michelle 07 sarah 07 eve 07
bob 07 ellen 07 sue 07 barak 03
todd 03 adam 03 gary 03 bert 03

xxx: barak 09 todd 09 adam 09 gary 09
bert 09 mike 09 ? 08 michelle 05
sarah 05 eve 05 bob 05 ellen 05

Note that in the “xxx” slot we get a strong representation
of the {barak, todd, adam, gary, bert, mike} pattern. This
pattern represents the lover role and a similar paradigmatic
pattern occurs in the “john” slot when the model is processing
the sentence “john loves mary”:

john: who 29 john 19 loves 06 barak 05
todd 05 adam 05 gary 05 bert 05 mike 05

loves: loves 42 john 10 mary 10
mary: mary 17 ? 11 michelle 08 sarah 08

eve 08 bob 08 ellen 08 sue 08

As a consequence, paradigmatic associations form be-
tween the {barak, todd, adam, gary, bert, mike} pattern
and “john”. The paradigmatic mechanism in itself, how-
ever, would not suffice to predict “john”, as “barak”, “todd”,
“adam”, “gary”, “bert” and “mike” are also associated with
the lover pattern. Only “john” has an associative connection
to “mary”, however, and the additional support afforded by
this connection favors “john”. At the output layer, we get the
following patterns:

who: who 97 john 03
loves: loves 100
mary: michelle 11 sarah 11 eve 11 bob 11

ellen 11 sue 11 barak 05 todd 05
adam 05 gary 05 bert 05 mike 05

?: ? 92 john 04
xxx: john 28 barak 06 todd 06 adam 06

780



gary 06 bert 06 mike 06 sue 05
ellen 05 bob 05 eve 05 sarah 05

The model approximates a propositional representation in
an associative form that does not rely on the creation of inde-
pendent propositional units of representation. Dennis (2004)
shows that these representations can be used to answer sim-
ple questions about tennis matches. Taking naturally occur-
ring text from the Association of Tennis Professionals web-
site, the model was able to complete questions of the form
“Who won the match between Sampras and Agassi? xxx”.
Particularly interesting was the fact that the model took ad-
vantage of the systematic occurrence of tokens through the
corpus as a consequence of the causal relationships between
events. It implements a kind of “inference by coincidence”
to determine results even when they are not explicitly stated
(Dennis, 2004).

While such results may be of theoretical interest, the ques-
tion remains as to whether the model can capture naturally
occurring data. In the following sections, we test the model
and investigate which components are crucial to its perfor-
mance.

Results
In the current paper, we focus on the models ability to predict
which word will appear in a given sentential context. We
will use perplexity to quantify the performance of the model.
Perplexity is an information theoretic measure of the degree
of uncertainty of a given choice. Formally, it is two to the
power of the cross entropy of the model with respect to the
empirical distribution of the data, which can be estimated as
follows:

P = 2−
1
N ∑

N
k=0 log2 p(wk) (6)

where p(wk) is the probability according to the model of
the kth word and N is the size of the sample. To provide an
intuition, a perplexity of x is the degree of uncertainty that
exists when faced with x equally probable and independent
alternatives.

In typical uses of the perplexity measure one is interested in
calculating the mean information content of an entire corpus.
That is, one is interested in the probability of the sequence
w1,w2, ...wn. In that case, it is common to decompose this
probability using the chain rule. When one does this only left
or right context can be used, but not both. In our case, we
are interested in the information content of individual word
choices given both left and right context. The same formula
applies, but the perplexity values that we report are not di-
rectly comparable to per word corpus perplexity values that
appear in the literature.

Comparison with Ngram Models
Driven by the need to create language models for speech
recognition and other tasks, much of the work on predict-
ing words occurs in computational linguistics. Within this
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Figure 2: Performance of the SP model as compared against
unigram, bigram and trigram models using both Good Turing
and Kneser Ney smoothing.

field ngram models have been shown to produce robust per-
formance and so we will compare the SP model against ngram
models using two commonly used and successful smoothing
techniques - Good Turing and Kneser Ney (Chen & Good-
man, 1998). Our ngram modelling results were generated us-
ing the SRILM toolkit (Stolcke, 2002).

Unless otherwise noted, the training set consisted of
100,000 sentences of the English gigaword corpus sections
NYT200001, NYT200002 and NYT200003 (2.4 million
words, Graff, Kong, Chen, & Maeda, 2007) and the test set
of 1000 sentences (23611 words). In our first set of simula-
tions, we trained the model using a learning rate γ of 1 and
a decay rate λ of 1. The paradigmatic layer was restricted to
the 200 most frequent words and all weights were restricted
to lie between 10 and -10. The vocabulary of the model (and
hence the size of the two syntagmatic banks of units, the as-
sociative bank and the output bank) was restricted to the 5006
most frequent tokens. Any tokens that occurred that were not
within the 5006 most frequent, were represented as an out
of vocabulary (OOV) item (xxx). Perplexity can be affected
by the inclusion or exclusion of these tokens, so we report
performance in both conditions. When referring to perplex-
ity values in text, we will adopt the convention of reporting
the perplexity with OOV tokens followed by the perplexity
without OOV items in brackets.

Figure 2 shows the perplexity of the SP model as com-
pared against unigram, bigram and trigram; Good Turing and
Kneser Ney models. The SP model performs significantly
better in all cases.

The size of the training corpus has a significant affect
on performance. Figure 3 shows the performance of the
model and the trigram Good Turing and Kneser Ney models
when the training set contained 500,000 sentences (12 mil-
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Figure 3: Performance of the models given a 500,000 sen-
tence (12 million word) training corpus.

lion words, on the fly values will be explained in the next sec-
tion). The best performance of the SP model was a perplexity
of 28.31 (35.61) with a training set of 27 million words.

To the best of our knowledge this is state of the art for this
task, and suggests that the model is capturing important reg-
ularities to which ngram models are insensitive. However, it
may be argued that left context only ngram models are un-
fairly compromised in this setting because they do not have
access to the right context. Typically, these models would be
used to assess the probability of a string of words. An incon-
sistent right context would then manifest in poor prediction
of subsequent words.

To provide a fairer test, we constructed a multinomial lo-
gistic regression model that employed bigram and trigram
features generated from the left and right context. So,
for instance, when the model was exposed to the sequence
w1,w2,w3,w4,w5 and we were trying to predict w3 then
we would use the features w2−, −w4, w1w2−, −w4w5 and
w2−w4.

The number of features generated by the ngram model was
very large. Consequently, we restricted the vocabulary to
1000 tokens and trained on the 500,000 sentence corpus used
above. Under these conditions, the ngram model had a total
of 457549 features and was approximately 285 times as large
as the SP model. Nevertheless, the SP model performed bet-
ter although the difference was not large. The SP model pro-
duced a perplexity of 15.75 (29.93), while the ngram model
produced a perplexity of 17.75 (31.91).

Figure 4 shows the performance of the SP and ngram mod-
els as a function of training examples. The performance of the
ngram model improves quickly, but is eventually matched and
then surpassed by the SP model. Also, it is quite noticeable
that the variance of the ngram model is significantly higher
than that of the SP model. To understand the relative per-
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Figure 4: Performance of the SP model compared against that
of the Ngram Features model.

formance of the models, we examined the tokens that were
strongly predicted by one model, but not the other. Table
shows the most frequent tokens that were well predicted by
the SP model and by the ngram model, respectively. The SP
model tends to do a better job of predicting high frequency to-
kens, while the ngram model is doing better on low frequency
tokens.

The Importance of Priming
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Figure 5: Performance measured as training progressed ver-
sus in train and test mode. The superior performance of on-
line training suggests that priming plays an important role.

As training progresses through the corpus, the weights cap-
ture long term regularities, but also track short term contin-
gencies that one might think of as a form of priming. To
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SP Model Ngram Model
Count Token Count Token

308 , 33 )
166 the 24 bush
142 . 19 “
74 of 17 .
41 to 16 a
31 ” 14 angeles
29 a 11 :
28 said 11 ,
12 years 10 spokesman
12 n’t 9 use
10 ’s 9 and

9 new 9 (
9 i 8 secretary
8 who 8 p.m.
8 in 7 year
6 more 7 very
5 his 7 texas

Table 1: Tokens well predicted by one of the models and not
the other. Counts are derived by sorting the tokens by the dif-
ferences between the probability predicted by the SP model
and Ngram models. The tokens corresponding to the top 1000
of these differences were then tabulated.

determine the potential significance of priming in the model,
perplexity was calculated as training progressed. Note that
because training consisted of a single iteration through the
training set, each prediction was of an unseen word. Figure
5 shows the results on the final 50,000 tokens of the training
set compared against the train/test results from the previous
section in which weights were fixed during testing. Clearly,
priming of this kind significantly improves the performance
of the model.

The trade off between retaining long term regularities
while tracking short term contingencies can be seen in the
performance of the model as the learning rate is manipulated.
With high learning rates recent information is emphasized,
while with lower learning rates long term information pre-
dominates. Figure 6 shows that there appears to be an optimal
tradeoff at around γ = 4 for this corpus. Because the train/test
methodology can only take advantage of long term regulari-
ties, performance gets worse as the learning rate increases.

Size of the Paradigmatic Layer
In the simple example outlined above, all words in the vocab-
ulary appeared in the paradigmatic representation. In order
to make the model more computationally efficient, we inves-
tigated the impact of reducing the size of this layer signifi-
cantly. Instead of taking the entire vocabulary of 5006 words,
we kept just the most frequent words. If a word did not ap-
pear in this set no learning on the first layer of weights was
conducted. Note the number of output units remained the
same and the second layer of weights was trained on every
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Figure 6: Performance as the learning rate is manipulated.

iteration. Performance does not change substantially, but it
appears that between 100 and 200 paradigmatic units is opti-
mal. We suspect that these most frequent words fulfil a role
somewhat like parts of speech.

Adding a Second Bank of Syntagmatic Units
Ding et al. (2009) demonstrate that the syntagmatic (before)
input representations as defined above have a number of in-
teresting properties with respect to the kinds of embedding
they can support. In particular, they found that with a sin-
gle bank of units a single level of center embedding can be
correctly predicted, but a single level of cross serial embed-
ding cannot - that is the patterns are not linearly separable.
The single bank model is not able to account for two levels
of embedding of either the center or cross serial kinds. With
two banks of units employing different decay rates, however,
cross serial and center embedding of one and two levels is
possible. Based on these results, they argued that a two bank
model best approximates human capabilities.

Figure 7 shows the results as the decay rate of a second
bank of syntagmatic units varies from 0 (no second bank) to
0.1. The ability of the model to predict which word can fill a
given slot is affected very little by the inclusion of the addi-
tional bank.

Lesioning the Model
While the paradigmatic and associative banks of units play a
central role in the logic of the model, to what extent do they
really aid in prediction? To determine this, we created a ver-
sion of the model which used the syntagmatic banks (before
and after) to predict words directly. Perplexity rises substan-
tially, from 45.46 (60.90) to 70.69 (99.46). Next, we lesioned
just the associative layer, leaving the paradigmatic layer in-
tact. Again performance was significantly impacted rising to
90.60 (139.23). Finally, we lesioned the right context both
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Figure 7: Performance when two banks of syntagmatic units
with different decay rates are used. In each case, the decay
rate of the first bank was 1.0.

at the syntagmatic layer and the associative layer. Perplexity
rose to 107.58 (160.67), demonstrating that the right context
makes a significant contribution to the ability of the model to
predict correctly.

Discussion and Conclusions
The SP model was initially developed as framework for un-
derstanding verbal cognition (Dennis, 2004, 2005). By cre-
ating a connectionist implementation, we have been able to
scale the model to large corpora, 27 million words of natu-
rally occurring text from the gigaword corpus, with a reason-
ably large vocabulary of 5006 words. With the model trained
on this corpora we were able to achieve a perplexity of 28.3.
This result is a significant improvement on Good Turing and
Kneser Ney ngram models on the same task and to the best of
our knowledge represents the state of the art. When an ngram
features model was trained using left and right context, the
advantage for the SP model was retained, although it was not
as large.

Furthermore, by observing as we changed parameters and
lesioned components, we have been able to isolate which
properties of the model are critical to its performance. The
first lesson is that priming is important. Online update of the
weights - a kind of priming - allows the model to track short
term contingencies. When we allowed weights to update as
we calculated the perplexity performance improved signifi-
cantly. Secondly, it appears that all of the component layers
make a substantial contribution to performance. When we
removed the top layer performance dropped. When we re-
moved the associative layer performance dropped and when
we removed the right context from the syntagmatic layer
and associative layer performance also dropped. By contrast
adding a second bank of syntagmatic inputs with a different

decay rate had little impact as did changing the size of the
paradigmatic layer - at least over the range that we manipu-
lated it.

We believe that these results provide prima facie evidence
for the model and suggest that there may be significant ad-
vantage in applied domains to considering the cognitive con-
straints on the sentence processing mechanism.
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