Embodied anticipation for swift re-adaptation in neurocomputational cognitive architectures for robotic agents


The coupling between a body (in an extended sense that encompasses both neural and non-neural dynamics) and its environment is here conceived as a critical substrate for cognition. We propose and discuss the plan for a neurocomputational cognitive architecture for robotic agents, so far implemented in its minimalist form for supporting the behavior of a simple simulated agent. A non-neural internal bodily mechanism (crucially characterized by a time scale much slower than the normal sensory-motor interactions of the robot with its environment) extends the cognitive potential of a system composed of purely reactive parts with a dynamic action selection mechanism and the capacity to integrate information over time. The same non-neural mechanism is the foundation for a novel, minimalist anticipatory architecture, capable of swift re-adaptation to related yet novel tasks.

Back to Saturday Posters